论文标题

深层网络以自动检测心脏的晚激活区域

Deep Networks to Automatically Detect Late-activating Regions of the Heart

论文作者

Xing, Jiarui, Ghadimi, Sona, Abdishektaei, Mohammad, Bilchick, Kenneth C., Epstein, Frederick H., Zhang, Miaomiao

论文摘要

本文提出了一种新的方法,可以自动从Cine位移中自动识别左心室的晚激活区域,该区域用刺激的回声(密集)MR图像编码。我们开发了一个深度学习框架,该框架通过检测到圆周缩短(TOS)的时间来识别心力衰竭患者的晚期机械激活。特别是,我们构建了一个级联网络,该网络对左心室的端到端(i)进行分割,以分析心脏功能,(ii)基于从位移图计算出的时空周围菌株对TOS进行预测,(iii)3D可视化延迟激活图。我们的方法可为基于传统优化的算法而大量节省手动劳动和计算时间。为了评估我们方法的有效性,我们对心脏图像进行测试,并与最近的相关工作进行比较。实验结果表明,提出的方法以提高精度提供了TOS的快速预测。

This paper presents a novel method to automatically identify late-activating regions of the left ventricle from cine Displacement Encoding with Stimulated Echo (DENSE) MR images. We develop a deep learning framework that identifies late mechanical activation in heart failure patients by detecting the Time to the Onset of circumferential Shortening (TOS). In particular, we build a cascade network performing end-to-end (i) segmentation of the left ventricle to analyze cardiac function, (ii) prediction of TOS based on spatiotemporal circumferential strains computed from displacement maps, and (iii) 3D visualization of delayed activation maps. Our approach results in dramatic savings of manual labors and computational time over traditional optimization-based algorithms. To evaluate the effectiveness of our method, we run tests on cardiac images and compare with recent related works. Experimental results show that the proposed approach provides fast prediction of TOS with improved accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源