论文标题
人类社会对话中善解反应意图的分类学
A Taxonomy of Empathetic Response Intents in Human Social Conversations
论文作者
论文摘要
在自然语言处理社区中,开放域的对话代理或聊天机器人越来越受欢迎。挑战之一是使他们能够以同情心的方式进行交谈。当前的神经反应生成方法仅依赖于大规模对话数据的端到端学习来生成对话。由于缺乏用于训练神经模型的大规模质量数据,这种方法可以产生社交不可接受的反应。但是,最近的工作表明了将对话行为/意图建模和神经反应产生结合的希望。这种混合方法提高了聊天机器人的响应质量,并使它们更容易控制和解释。对话意图建模的关键要素是分类法的发展。受这个想法的启发,我们使用了相当大的移情对话数据集(25K对话)手动标记了500个响应意图。我们的目标是为善解人意的反应意图产生大规模的分类学。此外,使用词汇和机器学习方法,我们将自动分析了整个数据集的扬声器和听众的话语,并具有识别的响应意图和32个情感类别。最后,我们使用信息可视化方法来总结情绪对话交换模式及其时间的进步。这些结果揭示了人类开放域对话中新颖而重要的同理心模式,并可以作为混合方法的启发式方法。
Open-domain conversational agents or chatbots are becoming increasingly popular in the natural language processing community. One of the challenges is enabling them to converse in an empathetic manner. Current neural response generation methods rely solely on end-to-end learning from large scale conversation data to generate dialogues. This approach can produce socially unacceptable responses due to the lack of large-scale quality data used to train the neural models. However, recent work has shown the promise of combining dialogue act/intent modelling and neural response generation. This hybrid method improves the response quality of chatbots and makes them more controllable and interpretable. A key element in dialog intent modelling is the development of a taxonomy. Inspired by this idea, we have manually labeled 500 response intents using a subset of a sizeable empathetic dialogue dataset (25K dialogues). Our goal is to produce a large-scale taxonomy for empathetic response intents. Furthermore, using lexical and machine learning methods, we automatically analysed both speaker and listener utterances of the entire dataset with identified response intents and 32 emotion categories. Finally, we use information visualization methods to summarize emotional dialogue exchange patterns and their temporal progression. These results reveal novel and important empathy patterns in human-human open-domain conversations and can serve as heuristics for hybrid approaches.