论文标题

有效的加强学习,可以通过部分可观察到流体流量控制

Efficient reinforcement learning with partially observable for fluid flow control

论文作者

Kubo, Akira, Shimizu, Masaki

论文摘要

尽管耗散粘性液的尺寸较低,但加固学习(RL)仍需要许多可观察到的流体控制问题。这是因为假定可观察到在RL框架中遵循独立于政策的马尔可夫决策过程。通过将策略参数作为价值函数的参数,我们构建了一种具有部分可观察情况的一致算法。使用典型的活动流控制示例,我们表明我们的算法比现有的RL算法更稳定,更有效,即使在少量可观察到的情况下也是如此。

Despite the low dimensionalities of dissipative viscous fluids, reinforcement learning (RL) requires many observables in fluid control problems. This is because the observables are assumed to follow a policy-independent Markov decision process in the RL framework. By including policy parameters as arguments of a value function, we construct a consistent algorithm with partially observable condition. Using typical examples of active flow control, we show that our algorithm is more stable and efficient than the existing RL algorithms, even under a small number of observables.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源