论文标题
广义Langevin方程的有效数值算法
Efficient Numerical Algorithms for the Generalized Langevin Equation
论文作者
论文摘要
我们研究了数值方法的设计和实施,以求解关注数值集成商的规范采样属性的广义Langevin方程(GLE)。为此,我们将GLE投入了扩展的相空间公式,并得出了概括现有的langevin动力学集成方法的一系列分裂方法。我们显示了法律上的指数融合以及通过这些整合方法获得的马尔可夫链的中心限制定理的有效性,我们表明,建议的整合方案的动态与确切动力学的渐近限制是一致的,并且可以重现(在短期内存极限)的超级范围属性(在短距离内),以使其具有类似的受抑制型langeics dynampy andange langeics的超级企业属性。然后,我们将提出的集成方法应用于多种模型系统,包括贝叶斯推理问题。我们在数值实验中证明,我们的方法在抽样的准确性方面优于其他提出的GLE集成方案。此外,使用Ceriotti等人[9]提出的GLE中的内存内核的参数化,我们的实验表明,基于GLE的采样方案在强大性和效率方面,基于GLE的采样方案优于最先进的采样方案。
We study the design and implementation of numerical methods to solve the generalized Langevin equation (GLE) focusing on canonical sampling properties of numerical integrators. For this purpose, we cast the GLE in an extended phase space formulation and derive a family of splitting methods which generalize existing Langevin dynamics integration methods. We show exponential convergence in law and the validity of a central limit theorem for the Markov chains obtained via these integration methods, and we show that the dynamics of a suggested integration scheme is consistent with asymptotic limits of the exact dynamics and can reproduce (in the short memory limit) a superconvergence property for the analogous splitting of underdamped Langevin dynamics. We then apply our proposed integration method to several model systems, including a Bayesian inference problem. We demonstrate in numerical experiments that our method outperforms other proposed GLE integration schemes in terms of the accuracy of sampling. Moreover, using a parameterization of the memory kernel in the GLE as proposed by Ceriotti et al [9], our experiments indicate that the obtained GLE-based sampling scheme outperforms state-of-the-art sampling schemes based on underdamped Langevin dynamics in terms of robustness and efficiency.