论文标题
学习生成内容感知的动态探测器
Learning to Generate Content-Aware Dynamic Detectors
论文作者
论文摘要
模型效率对于对象检测至关重要。大多数有益的作品都依赖于手工设计的设计或自动搜索方法来获得静态体系结构,无论输入的差异如何。在本文中,我们介绍了设计有效探测器的新广告,该探测器正在自动生成苍蝇样品自适应模型体系结构。所提出的方法命名为参数感知的动态检测器(CADDET)。它首先应用了一个多尺度连接的网络,其动态路由作为超网。此外,我们引入了一个针对对象检测的课程到预定的层间浮雕,以指导动态路由的学习,其中包含两个指标:1)动态全球预算约束分配了单个样本的数据依赖性期望值; 2)局部路径相似性正规化旨在产生更多不同的路由路径。有了这些,我们的方法在保持良好的性能的同时,提高了较高的计算效率。据我们所知,我们的CADDET是第一个在对象检测中介绍动态路由机制的工作。在MS-Coco数据集上的实验表明,与香草路由策略相比,Caddet获得1.8个地图,较少的拖失率较少10%。与基于相似构建块的模型相比,CADDET通过竞争地图可减少42%的插曲。
Model efficiency is crucial for object detection. Mostprevious works rely on either hand-crafted design or auto-search methods to obtain a static architecture, regardless ofthe difference of inputs. In this paper, we introduce a newperspective of designing efficient detectors, which is automatically generating sample-adaptive model architectureon the fly. The proposed method is named content-aware dynamic detectors (CADDet). It first applies a multi-scale densely connected network with dynamic routing as the supernet. Furthermore, we introduce a course-to-fine strat-egy tailored for object detection to guide the learning of dynamic routing, which contains two metrics: 1) dynamic global budget constraint assigns data-dependent expectedbudgets for individual samples; 2) local path similarity regularization aims to generate more diverse routing paths. With these, our method achieves higher computational efficiency while maintaining good performance. To the best of our knowledge, our CADDet is the first work to introduce dynamic routing mechanism in object detection. Experiments on MS-COCO dataset demonstrate that CADDet achieves 1.8 higher mAP with 10% fewer FLOPs compared with vanilla routing strategy. Compared with the models based upon similar building blocks, CADDet achieves a 42% FLOPs reduction with a competitive mAP.