论文标题

非线性相对归一化的多阶段和多源遥感图像分类

Multi-temporal and multi-source remote sensing image classification by nonlinear relative normalization

论文作者

Tuia, Devis, Marcos, Diego, Camps-Valls, Gustau

论文摘要

利用多个传感器的遥感图像分类是一个非常具有挑战性的问题:来自不同模式的数据受各种光谱扭曲和错误对准的影响,并且这种hampers重新使用了为一个图像构建的hampers在其他场景中成功使用的模型。为了调整和转移图像采集的模型,必须能够应对未共同注册的数据集,在不同的照明和大气条件下,不同的传感器以及稀缺的地面参考。传统上,已经使用了基于直方图匹配的方法。但是,当密度非常不同时或图像之间没有相应的频带时,它们会失败。替代基于\ emph {comploold对齐}。在产品生成之前,歧管对齐对数据进行多维相对归一化,以应对不同维度(例如不同数量的频段)和可能不成对的示例的数据。对齐数据分布是一个有吸引力的策略,因为它允许提供彼此更相似的数据空间,而不管随后使用转换数据。在本文中,我们研究了一种通过{\ em kernelization}以非线性方式对齐数据的方法。我们介绍了提供灵活且歧视性的投影图的内核歧管比对方法(KEMA)方法,仅利用每个域中的几个标记的样本(或语义领域),并减少解决广义特征值问题。我们成功地测试了多个颞和多源的非常高分辨率分类任务的KEMA,以及使模型不变的高光谱成像的模型的任务。

Remote sensing image classification exploiting multiple sensors is a very challenging problem: data from different modalities are affected by spectral distortions and mis-alignments of all kinds, and this hampers re-using models built for one image to be used successfully in other scenes. In order to adapt and transfer models across image acquisitions, one must be able to cope with datasets that are not co-registered, acquired under different illumination and atmospheric conditions, by different sensors, and with scarce ground references. Traditionally, methods based on histogram matching have been used. However, they fail when densities have very different shapes or when there is no corresponding band to be matched between the images. An alternative builds upon \emph{manifold alignment}. Manifold alignment performs a multidimensional relative normalization of the data prior to product generation that can cope with data of different dimensionality (e.g. different number of bands) and possibly unpaired examples. Aligning data distributions is an appealing strategy, since it allows to provide data spaces that are more similar to each other, regardless of the subsequent use of the transformed data. In this paper, we study a methodology that aligns data from different domains in a nonlinear way through {\em kernelization}. We introduce the Kernel Manifold Alignment (KEMA) method, which provides a flexible and discriminative projection map, exploits only a few labeled samples (or semantic ties) in each domain, and reduces to solving a generalized eigenvalue problem. We successfully test KEMA in multi-temporal and multi-source very high resolution classification tasks, as well as on the task of making a model invariant to shadowing for hyperspectral imaging.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源