论文标题
不变标量卡kähller指标在线捆绑上的旗帜品种
Invariant scalar-flat Kähler metrics on line bundles over generalized flag varieties
论文作者
论文摘要
让$ g $成为一个简单连接的半杂交谎言组,$ x $紧凑型kähler歧管均等,$ g $和$ l $ a $ a $ g $ g $ equivariant holomorthiant holomorthic line bundle bundle aff $ x $ $ x $。我们证明,所有$ g $ invariantkähler指标都来自卡拉比·安萨兹(Calabi Ansatz)。然后,我们证明存在一个唯一的$ g $ invariant标量标量kähler指标,在$ l $的每个kähler类中。
Let $G$ be a simply-connected semisimple compact Lie group, $X$ a compact Kähler manifold homogeneous under $G$, and $L$ a negative $G$-equivariant holomorphic line bundle over $X$. We prove that all $G$-invariant Kähler metrics on the total space of $L$ arise from the Calabi ansatz. Using this, we then show that there exists a unique $G$-invariant scalar-flat Kähler metric in each Kähler class of $L$.