论文标题

原子级的机器学习

Machine learning at the atomic-scale

论文作者

Musil, Félix, Ceriotti, Michele

论文摘要

统计学习算法正在寻找越来越多的科学技术应用。原子级建模也不例外,机器学习成为预测分子和凝结相系统能量,力和特性的工具。这篇简短的评论总结了该领域的最新进展,尤其重点是以数学稳健和计算有效的方式代表原子配置的问题。我们还讨论了一些用于构建原子级特性替代模型的回归算法。然后,我们展示了如何优化机器学习模型,既可以将洞察力并揭示到构成结构 - 统治关系的物理现象上的洞察力。

Statistical learning algorithms are finding more and more applications in science and technology. Atomic-scale modeling is no exception, with machine learning becoming commonplace as a tool to predict energy, forces and properties of molecules and condensed-phase systems. This short review summarizes recent progress in the field, focusing in particular on the problem of representing an atomic configuration in a mathematically robust and computationally efficient way. We also discuss some of the regression algorithms that have been used to construct surrogate models of atomic-scale properties. We then show examples of how the optimization of the machine-learning models can both incorporate and reveal insights onto the physical phenomena that underlie structure-property relations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源