论文标题

吉拉德(Girard)的线性逻辑学家的先验语法的温和介绍

A gentle introduction to Girard's Transcendental Syntax for the linear logician

论文作者

Eng, Boris

论文摘要

从技术上讲,先验语法是关于用计算基础设计逻辑的。它提出了一个新的证明理论框架,其中逻辑(证明,公式,真理,...)不是原始的,而是计算是原始的。所有逻辑实体和活动都将作为给定的计算模型上的格式/结构呈现,该模型应尽可能一般,简单和自然。先验语法中逻辑的选定基础是我称之为“恒星分辨率”的计算模型,它基本上是对鲁滨逊一阶clau​​sal分辨率的无逻辑重新印象,具有与瓷砖系统相关的动力学。先验语法的初始目标是从这个新框架中检索线性逻辑。特别是,该模型自然地编码了用于证明结构的切割。通过使用“交互式键入”的想法,让人联想到真实性理论,可以设计概括线性逻辑连接剂的公式/类型。多亏了交互式打字,我们才能够到达一个无语言的空间,在该空间中,正确性标准被视为测试(如单位测试或模型检查),以证明逻辑正确性,从而有效地使用逻辑实体。

Technically speaking, the transcendental syntax is about designing logics with a computational foundation. It suggests a new framework for proof theory where logic (proofs, formulas, truth, ...) is no more primitive but computation is. All the logical entities and activities will be presented as formatting/structuring on a given model of computation which should be as general, simple and natural as possible. The selected ground for logic in the transcendental syntax is a model of computation I call "stellar resolution" which is basically a logic-free reformulation of Robinson's first-order clausal resolution with a dynamics related to tile systems. An initial goal of the transcendental syntax is to retrieve linear logic from this new framework. In particular, this model naturally encodes cut-elimination for proof-structures. By using an idea of "interactive typing" reminiscent of realisability theory, it is possible to design formulas/types generalising the connectives of linear logic. Thanks to interactive typing, we are able to reach a semantic-free space where correctness criteria are seen as tests (as in unit testing or model checking) certifying logical correctness, thus allowing an effective use of logical entities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源