论文标题
正交多项式的滤波器积分
Filter integrals for orthogonal polynomials
论文作者
论文摘要
由珀森(Persson)和斯特朗(Strang)在涉及Legendre多项式的整体上的表达的激励,指出$ p_ {2n+1}(x)/x $的平方超过$ [ - 1,1] $始终是$ 2 $,我们为Hermite,shermite,chebyshev,chebyshev,laguerre和gegegenbauer和polynomials and diendex and nidex and andexirend and andexnomials and andexnomials and andexnomials and andexirence。
Motivated by an expression by Persson and Strang on an integral involving Legendre polynomials, stating that the square of $P_{2n+1}(x)/x$ integrated over $[-1,1]$ is always $2$, we present analog results for Hermite, Chebyshev, Laguerre and Gegenbauer polynomials as well as the original Legendre polynomial with even index.