论文标题
使用混合机学习方法检索地上作物氮含量
Retrieval of aboveground crop nitrogen content with a hybrid machine learning method
论文作者
论文摘要
事实证明,高光谱采集是估计氮(N)含量的最有用的地球观测数据来源,这是植物生长以及农业生产的主要限制养分。过去,经验算法已被广泛用于从冠层反射率中检索有关这种生化植物成分的信息。但是,这些方法并不是寻求基于物理定律的因果关系。此外,大多数研究仅依赖于叶绿素含量与氮的相关性,因此忽略了大多数N在蛋白质中结合的事实。我们的研究使用基于物理的方法与机器学习回归相结合以估算作物n含量的方法,提出了一种混合检索方法。在工作流程中,叶片光学性质模型前景pro(包括蛋白质的新校准的特定吸收系数(SAC))与冠层反射率4Sail到Prosail-Pro结合。然后使用后者生成一个训练数据库,用于高级概率机器学习方法:标准同型高斯工艺(GP)和异性驱动的GP回归,该回归涉及信号到噪声关系。两种GP模型都具有为估计提供置信区间的属性,这使它们与其他机器学习者区分开来。基于GP的频带分析确定了主要位于短波红外(SWIR)光谱区域的最佳光谱设置。文献中著名的蛋白质吸收带的使用显示出比较结果。最后,在空气中的高光谱数据中成功应用了异质的GP模型以进行N映射。我们得出的结论是,GP算法,尤其是异质分子GP,应实施从未来的成像光谱数据中对地上N的全球农业监测。
Hyperspectral acquisitions have proven to be the most informative Earth observation data source for the estimation of nitrogen (N) content, which is the main limiting nutrient for plant growth and thus agricultural production. In the past, empirical algorithms have been widely employed to retrieve information on this biochemical plant component from canopy reflectance. However, these approaches do not seek for a cause-effect relationship based on physical laws. Moreover, most studies solely relied on the correlation of chlorophyll content with nitrogen, and thus neglected the fact that most N is bound in proteins. Our study presents a hybrid retrieval method using a physically-based approach combined with machine learning regression to estimate crop N content. Within the workflow, the leaf optical properties model PROSPECT-PRO including the newly calibrated specific absorption coefficients (SAC) of proteins, was coupled with the canopy reflectance model 4SAIL to PROSAIL-PRO. The latter was then employed to generate a training database to be used for advanced probabilistic machine learning methods: a standard homoscedastic Gaussian process (GP) and a heteroscedastic GP regression that accounts for signal-to-noise relations. Both GP models have the property of providing confidence intervals for the estimates, which sets them apart from other machine learners. GP-based band analysis identified optimal spectral settings with ten bands mainly situated in the shortwave infrared (SWIR) spectral region. Use of well-known protein absorption bands from the literature showed comparative results. Finally, the heteroscedastic GP model was successfully applied on airborne hyperspectral data for N mapping. We conclude that GP algorithms, and in particular the heteroscedastic GP, should be implemented for global agricultural monitoring of aboveground N from future imaging spectroscopy data.