论文标题
提取本质加权网络的符号骨干
Extracting the signed backbone of intrinsically dense weighted networks
论文作者
论文摘要
网络提供了有用的工具来分析来自自然,社会和技术领域的各种复杂系统。越来越大的节点和链接以及相关的权重,方向和标志等大小和多种数据可以提供附件信息。另一方面,链接和重量丰度导致具有嘈杂,微不足道或以其他冗余数据的密集网络。此外,典型的网络分析和可视化技术以稀疏性为前提,对于密集和加权网络不合适或可扩展。作为一种补救措施,网络骨干提取方法旨在仅保留重要的链接,同时保留原始网络的有用和阐明结构以进行进一步分析。在这里,我们提供了第一个方法,用于从本质上密集的无签名单分子加权网络中提取签名的网络骨干。利用基于统计技术的无效模型,提出的显着性过滤器和活力滤波器允许推断边缘符号。关于迁移,投票,时间相互作用和物种相似性网络的经验分析表明,所提出的过滤器提取有意义且稀疏的签名的骨架,同时保留网络的多尺度性质。由此产生的骨干表现出通常与签名网络有关的特征,例如互惠,结构平衡和社区结构。开发的工具作为免费的开源软件包提供。
Networks provide useful tools for analyzing diverse complex systems from natural, social, and technological domains. Growing size and variety of data such as more nodes and links and associated weights, directions, and signs can provide accessory information. Link and weight abundance, on the other hand, results in denser networks with noisy, insignificant, or otherwise redundant data. Moreover, typical network analysis and visualization techniques presuppose sparsity and are not appropriate or scalable for dense and weighted networks. As a remedy, network backbone extraction methods aim to retain only the important links while preserving the useful and elucidative structure of the original networks for further analyses. Here, we provide the first methods for extracting signed network backbones from intrinsically dense unsigned unipartite weighted networks. Utilizing a null model based on statistical techniques, the proposed significance filter and vigor filter allow inferring edge signs. Empirical analysis on migration, voting, temporal interaction, and species similarity networks reveals that the proposed filters extract meaningful and sparse signed backbones while preserving the multiscale nature of the network. The resulting backbones exhibit characteristics typically associated with signed networks such as reciprocity, structural balance, and community structure. The developed tool is provided as a free, open-source software package.