论文标题

实现台球书籍的综合哈密顿系统

Realization of Integrable Hamiltonian Systems by Billiard Books

论文作者

Fomenko, Anatoly, Kharcheva, Irina, Kibkalo, Vladislav

论文摘要

在本文中,我们讨论了Fomenko的猜想,以实现可循环台球的光滑和实现的综合汉密尔顿系统的拓扑拓扑结构的拓扑结构。在$ f $ graphs的角度清楚地描述了台球书的3个原子实现的Vedyushkina-Kharcheva算法。请注意,V. vedyushkina和I. Kharcheva算法也实现了整个同工基表面的liouville叶面的任意类型。在本文中,该算法在视觉上应用于在某个能量区域中著名的Zhukovskii集成系统(带有陀螺仪的Euler系统)。事实证明,使用这种结构,不仅是其基础的类别,还实现了liouville叶面。因此,显示了这些台球和机械系统的liouville等效性。然后,我们讨论V. Kibkalo和V. Vedyushkina的结果,以任意数值不变的台球构建。事实证明,对于台球书的某些子类没有潜力的子类,福门科 - Zieschang的存在。而且,证明此类系统在拓扑上是稳定的。在本文的最后,我们表明,某些潜在领域中的平面台球系统可以具有非分类等级1 4 simularity奇异性不满足不满意条件。 关键字:数学台球,台球书,可综合的哈密顿系统,僵化的身体动力学,liouville foliation,Fomenko-Zieschang不变,奇异性。

In the paper we discuss Fomenko conjecture on realization of topology of topology of Liouville foliaions of smooth and real-analytic integrable Hamiltonian systems by integrable billiards. Vedyushkina-Kharcheva algorithm of 3-atom realization by billiard books is described clearly in the terms of $f$-graphs. Note, that an arbitrary type of base of Liouville foliation on the whole isoenergy surface was also realized by V. Vedyushkina and I. Kharcheva algorithm. In this paper this algorithm is visually applied to realization of a well-known Zhukovskii integrable system (Euler system with a gyrostat) in a certain energy zone. It turns out that Liouville foliation is also realized using this construction, not only the class of its base. Thus, Liouville equivalence of these billiard and mechanical systems is shown. Then we discuss V. Kibkalo and V. Vedyushkina result on constructing of a billiard with an arbitrary numerical invariant. Existence of Fomenko-Zieschang invariant is proved for some subclass of billiard books without potential. Also, it is proved that such systems are topologically stable. In the end of the paper we show that planar billiard system in some potential field can have a non-degenerate rank 1 4-singularity singularity not satisfying non-splitting condition. Keywords: mathematical billiard, billiard book, integrable Hamiltonian system, rigid body dynamics, Liouville foliation, Fomenko-Zieschang invariant, singularity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源