论文标题

数据驱动的交叉路口管理解决方案,用于人类驱动和连接和自动化车辆的混合流量

Data-Driven Intersection Management Solutions for Mixed Traffic of Human-Driven and Connected and Automated Vehicles

论文作者

Bashiri, Masoud

论文摘要

本文提交了在有连接和自动化车辆在场的情况下,提出了两种用于城市交通管制的解决方案。首先,提出了一个基于集合的排队控制器,用于合作交叉管理问题,该问题利用了编排系统和V2I通信,以在单个交集处产生快速,平稳的交通流量。 其次,在存在连接车辆的情况下,提出了一种数据驱动的方法来进行自适应信号控制。所提出的系统依赖于数据驱动的方法,用于最佳信号时间和用于估计路由决策的数据驱动的启发式方法。与典型的自适应信号控制器的典型设置相比,交叉路口不需要安装其他传感器,从而降低了安装成本。 提出的流量控制器包含一个最佳信号正时模块和交通状态估计器。信号正时模块是一种神经网络模型,该模型在微观模拟数据上训练,以根据给定的性能指标(例如车辆延迟或平均队列长度)获得最佳结果。交通状态估计器依靠连接的车辆的信息来估算流量的路由决策。提出了一种启发式方法来最大程度地减少估计误差。随着足够的参数调整,随着连接车辆的市场渗透率(MPR)的增长,估计误差降低。 MPR为10%的估计误差低于30%,当MPR生长大于30%时,估计误差降低了20%。 模拟显示,拟议的交通控制器的表现优于高速公路容量手册的方法,并给出适当的离线参数调整,它可以将平均车辆延迟降低多达25%。

This dissertation proposes two solutions for urban traffic control in the presence of connected and automated vehicles. First a centralized platoon-based controller is proposed for the cooperative intersection management problem that takes advantage of the platooning systems and V2I communication to generate fast and smooth traffic flow at a single intersection. Second, a data-driven approach is proposed for adaptive signal control in the presence of connected vehicles. The proposed system relies on a data-driven method for optimal signal timing and a data-driven heuristic method for estimating routing decisions. It requires no additional sensors to be installed at the intersection, reducing the installation costs compared to typical settings of state-of-the-practice adaptive signal controllers. The proposed traffic controller contains an optimal signal timing module and a traffic state estimator. The signal timing module is a neural network model trained on microscopic simulation data to achieve optimal results according to a given performance metric such as vehicular delay or average queue length. The traffic state estimator relies on connected vehicles' information to estimate the traffic's routing decisions. A heuristic method is proposed to minimize the estimation error. With sufficient parameter tuning, the estimation error decreases as the market penetration rate (MPR) of connected vehicles grows. Estimation error is below 30% for an MPR of 10% and it shrinks below 20% when MPR grows larger than 30%. Simulations showed that the proposed traffic controller outperforms Highway Capacity Manual's methodology and given proper offline parameter tuning, it can decrease average vehicular delay by up to 25%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源