论文标题
双方图通过共同信息最大化嵌入
Bipartite Graph Embedding via Mutual Information Maximization
论文作者
论文摘要
由于两分图广泛用于各种应用域,两部分图嵌入最近引起了很多关注。大多数采用基于步行或基于重建目标的随机步行的方法,通常可以有效学习本地图形结构。然而,两部分图的全球性能,包括均质节点的社区结构和异质淋巴结的长期依赖性,但并未得到很好的保存。在本文中,我们提出了一个名为BIGI的二分图嵌入,以通过引入新型的局部全球信息目标来捕获此类全局特性。具体而言,BIGI首先生成一个由两个原型表示组成的全局表示。然后,Bigi通过提出的子图级的注意机制将采样边缘作为局部表示。通过最大化本地和全球表示之间的相互信息,BIGI使两部分图中的节点具有全球相关性。我们的模型在各种基准数据集上进行了评估,以实现TOP-K建议和链接预测的任务。广泛的实验表明,BIGI比最先进的基线实现了一致和显着的改进。详细的分析验证了建模两分图的全局特性的高效。
Bipartite graph embedding has recently attracted much attention due to the fact that bipartite graphs are widely used in various application domains. Most previous methods, which adopt random walk-based or reconstruction-based objectives, are typically effective to learn local graph structures. However, the global properties of bipartite graph, including community structures of homogeneous nodes and long-range dependencies of heterogeneous nodes, are not well preserved. In this paper, we propose a bipartite graph embedding called BiGI to capture such global properties by introducing a novel local-global infomax objective. Specifically, BiGI first generates a global representation which is composed of two prototype representations. BiGI then encodes sampled edges as local representations via the proposed subgraph-level attention mechanism. Through maximizing the mutual information between local and global representations, BiGI enables nodes in bipartite graph to be globally relevant. Our model is evaluated on various benchmark datasets for the tasks of top-K recommendation and link prediction. Extensive experiments demonstrate that BiGI achieves consistent and significant improvements over state-of-the-art baselines. Detailed analyses verify the high effectiveness of modeling the global properties of bipartite graph.