论文标题

进化游戏理论中的手性边缘模式:岩纸剪辑器的Kagome网络

Chiral edge modes in evolutionary game theory: a kagome network of rock-paper-scissors

论文作者

Yoshida, Tsuneya, Mizoguchi, Tomonari, Hatsugai, Yasuhiro

论文摘要

从理论上讲,我们在自然科学以外的系统中证明了手性边缘模式的实现。具体而言,我们阐明了岩纸仪(K-RPS)的Kagome网络具有人口密度的手性边缘模式,该模式受批量非客气拓扑的保护。手性边缘模式的出现通过数值求解Lotka-Volterra(LV)方程来证明。可以通过单个RPS循环的循环运动来直观地理解该数值结果,该循环运动类似于费米子的回旋子运动。此外,我们指出的是,线性化的LV方程在数学上等同于描述量子系统的Schrödinger方程。这种等效性使我们能够阐明K-RPS手性边缘模式的拓扑起源。收益矩阵的非零CHERN数量诱导了人口密度的手性边缘模式,这体现了进化游戏理论所描述的二维系统中的批量边缘对应关系。

We theoretically demonstrate the realization of a chiral edge mode in a system beyond natural science. Specifically, we elucidate that a kagome network of rock-paper-scissors (K-RPS) hosts a chiral edge mode of the population density which is protected by the non-trivial topology in the bulk. The emergence of the chiral edge mode is demonstrated by numerically solving the Lotka-Volterra (LV) equation. This numerical result can be intuitively understood in terms of cyclic motion of a single RPS cycle which is analogues to the cyclotron motion of fermions. Furthermore, we point out that a linearized LV equation is mathematically equivalent to the Schrödinger equation describing quantum systems. This equivalence allows us to clarify the topological origin of the chiral edge mode in the K-RPS; a non-zero Chern number of the payoff matrix induces the chiral edge mode of the population density, which exemplifies the bulk-edge correspondence in two-dimensional systems described by evolutionary game theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源