论文标题
分析和最佳边缘分配,用于分层联合学习的非IID数据
Analysis and Optimal Edge Assignment For Hierarchical Federated Learning on Non-IID Data
论文作者
论文摘要
分布式学习算法旨在利用存储在用户设备上的分布式和多样的数据,通过在参与的设备中进行培训并定期将其本地模型的参数汇总到全球模型中,以学习全球现象。联合学习是一个有希望的范式,可以在汇总参数之前扩展参与者设备之间的本地培训,从而提供更好的沟通效率。但是,在参与者数据强烈偏斜(即非IID)的情况下,本地模型可以过度拟合本地数据,从而导致性能较低的全局模型。在本文中,我们首先表明性能下降的主要原因是用户设备上的类上的分布与全球分布之间的加权距离。然后,为了面对这一挑战,我们利用边缘计算范式设计了一个分层学习系统,该系统在用户边缘层上执行联合梯度下降并在边缘云层上平均。在此层次结构中,我们对此用户边缘分配问题进行形式化和优化,以使边缘级别的数据分布变为相似(即接近IID),从而增强了联合的平均性能。我们在多个现实世界数据集上进行的实验表明,提出的优化分配是可行的,并导致模型更快地收敛到更好的精度值。
Distributed learning algorithms aim to leverage distributed and diverse data stored at users' devices to learn a global phenomena by performing training amongst participating devices and periodically aggregating their local models' parameters into a global model. Federated learning is a promising paradigm that allows for extending local training among the participant devices before aggregating the parameters, offering better communication efficiency. However, in the cases where the participants' data are strongly skewed (i.e., non-IID), the local models can overfit local data, leading to low performing global model. In this paper, we first show that a major cause of the performance drop is the weighted distance between the distribution over classes on users' devices and the global distribution. Then, to face this challenge, we leverage the edge computing paradigm to design a hierarchical learning system that performs Federated Gradient Descent on the user-edge layer and Federated Averaging on the edge-cloud layer. In this hierarchical architecture, we formalize and optimize this user-edge assignment problem such that edge-level data distributions turn to be similar (i.e., close to IID), which enhances the Federated Averaging performance. Our experiments on multiple real-world datasets show that the proposed optimized assignment is tractable and leads to faster convergence of models towards a better accuracy value.