论文标题

迈向全球动态风图集:MERRA-2和ERA-5 REANALYSES的风力模拟的多国验证与全球风

Towards a global dynamic wind atlas: A multi-country validation of wind power simulation from MERRA-2 and ERA-5 reanalyses bias-corrected with the Global Wind Atlas

论文作者

Gruber, Katharina, Regner, Peter, Wehrle, Sebastian, Zeyringer, Marianne, Schmidt, Johannes

论文摘要

重新分析数据被广泛用于模拟可再生能源,特别是风力发电。尽管Merra-2在许多研究中一直是事实上的标准,但较新的ERA5-重新分析最近变得重要。在这里,我们使用这两个数据集模拟了风力发电,并在对历史风力发电的验证验证时,根据相关性和错误来评估各自的质量。但是,由于其粗糙的空间分辨率,重新分析无法充分代表局部气候条件。因此,我们还使用两个版本的全球风图集(GWA)应用平均偏置校正,并评估所得模拟的各自质量。数据集的潜在用户还可以从我们对空间和时间聚集对仿真质量指标的影响的分析中受益。尽管进行了类似的研究,但它们主要涵盖欧洲有限的地区。相比之下,我们调查了全球在现行气候方面有很大差异的地区:美国,巴西,南非和新西兰。我们的主要发现是(i)ERA5优于Merra-2,(ii)通过使用与GWA2的偏差纠正,无法预期的重大改进,而GWA3甚至降低了模拟质量,并且(iii)暂时聚集会增加相关性并增加了错误,而在比较非常低的水平和非常高的水平时,则可以降低错误的相关性。

Reanalysis data are widely used for simulating renewable energy and in particular wind power generation. While MERRA-2 has been a de-facto standard in many studies, the newer ERA5- reanalysis recently gained importance. Here, we use these two datasets to simulate wind power generation and evaluate the respective quality in terms of correlations and errors when validated against historical wind power generation. However, due to their coarse spatial resolution, reanalyses fail to adequately represent local climatic conditions. We therefore additionally apply mean bias correction with two versions of the Global Wind Atlas (GWA) and assess the respective quality of resulting simulations. Potential users of the dataset can also benefit from our analysis of the impact of spatial and temporal aggregation on simulation quality indicators. While similar studies have been conducted, they mainly cover limited areas in Europe. In contrast, we look into regions, which globally differ significantly in terms of the prevailing climate: the US, Brazil, South-Africa, and New Zealand. Our principal findings are that (i) ERA5 outperforms MERRA-2, (ii) no major improvements can be expected by using bias-correction with GWA2, while GWA3 even reduces simulation quality, and (iii) temporal aggregation increases correlations and reduces errors, while spatial aggregation does so only consistently when comparing very low and very high aggregation levels.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源