论文标题
能量稳定的C0有限元方案,用于囊泡运动和变形的相位模型
An Energy Stable C0 Finite Element Scheme for A Phase-Field Model of Vesicle Motion and Deformation
论文作者
论文摘要
引入了热力学一致的相位模型,以模拟流动条件下囊泡的运动和形状转化。特别是,使用一般滑移边界条件来描述囊泡与流体结构域的壁之间的相互作用。提出了在时空和时间C0有限元方法中的二阶精确度来求解模型管理方程。各种数值测试证实了拟议方案的细胞的质量和表面积的收敛,能量稳定性以及保护性。具有不同机械性能的囊泡也用于解释镰状细胞疾病患者的病理风险。
A thermodynamically consistent phase-field model is introduced for simulating motion and shape transformation of vesicles under flow conditions. In particular, a general slip boundary condition is used to describe the interaction between vesicles and the wall of the fluid domain. A second-order accurate in both space and time C0 finite element method is proposed to solve the model governing equations. Various numerical tests confirm the convergence, energy stability, and conservation of mass and surface area of cells of the proposed scheme. Vesicles with different mechanical properties are also used to explain the pathological risk for patients with sickle cell disease.