论文标题
Lagrangian和各向同性Tori的多面体近似
Polyhedral approximation by Lagrangian and isotropic tori
论文作者
论文摘要
我们证明,通过沉浸式的多面拉格朗日托里(Lagrangian Tori),可以在C0浓度中近似$ \ mathbb {r}^4 $的每一个平滑沉浸的2道毛。如果是$ \ mathbb {r}^4 $的平滑浸入(分别嵌入的)拉格朗日圆环,则可以通过浸入(嵌入的)多面体拉格朗日圆锥形的(嵌入)c1浓度将表面近似。对于$ \ mathbb {r}^{2n} $的各向同性2 tori证明了类似的语句。
We prove that every smoothly immersed 2-torus of $\mathbb{R}^4$ can be approximated, in the C0-sense, by immersed polyhedral Lagrangian tori. In the case of a smoothly immersed (resp. embedded) Lagrangian torus of $\mathbb{R}^4$, the surface can be approximated in the C1-sense by immersed (resp. embedded) polyhedral Lagrangian tori. Similar statements are proved for isotropic 2-tori of $\mathbb{R}^{2n}$.