论文标题

地球观察中的机器学习信息融合:对方法,应用和数据源的全面综述

Machine Learning Information Fusion in Earth Observation: A Comprehensive Review of Methods, Applications and Data Sources

论文作者

Salcedo-Sanz, S., Ghamisi, P., Piles, M., Werner, M., Cuadra, L., Moreno-Martínez, A., Izquierdo-Verdiguier, E., Muñoz-Marí, J., Mosavi, Amirhosein, Camps-Valls, G.

论文摘要

本文回顾了基于机器学习(ML)技术的最重要信息融合数据驱动的算法,以解决地球观察中的问题。如今,我们从众多的传感器,测量状态,通量,过程和变量中观察到了大量的观察结果,以前所未有的空间和时间分辨率进行观察。地球观测配备了遥感系统,安装在卫星和机载平台上,但还涉及原位观察,数值模型和社交媒体数据流以及其他数据源。数据驱动的方法,尤其是ML技术是从此数据洪水中提取重要信息的自然选择。本文对有关地球观察的信息融合的最新工作进行了详尽的回顾,具有实际意图,不仅侧重于描述该领域最相关的先前作品,而且还着重于ML信息融合获得了重大结果的最重要的地球观察应用。我们还回顾了一些目前最常使用的数据集,模型和地球观察问题的来源,描述了它们的重要性以及如何在需要时获取数据。最后,我们说明了ML数据融合与一组代表性的案例研究的应用,以及我们讨论并展望该领域的近期。

This paper reviews the most important information fusion data-driven algorithms based on Machine Learning (ML) techniques for problems in Earth observation. Nowadays we observe and model the Earth with a wealth of observations, from a plethora of different sensors, measuring states, fluxes, processes and variables, at unprecedented spatial and temporal resolutions. Earth observation is well equipped with remote sensing systems, mounted on satellites and airborne platforms, but it also involves in-situ observations, numerical models and social media data streams, among other data sources. Data-driven approaches, and ML techniques in particular, are the natural choice to extract significant information from this data deluge. This paper produces a thorough review of the latest work on information fusion for Earth observation, with a practical intention, not only focusing on describing the most relevant previous works in the field, but also the most important Earth observation applications where ML information fusion has obtained significant results. We also review some of the most currently used data sets, models and sources for Earth observation problems, describing their importance and how to obtain the data when needed. Finally, we illustrate the application of ML data fusion with a representative set of case studies, as well as we discuss and outlook the near future of the field.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源