论文标题

无服务器云中汇总功能的描述性和预测分析:视频流的情况

Descriptive and Predictive Analysis of Aggregating Functions in Serverless Clouds: the Case of Video Streaming

论文作者

Wu, Shangrui, Denninnart, Chavit, Li, Xiangbo, Wang, Yang, Salehi, Mohsen Amini

论文摘要

无服务器的云分配了来自共享计算资源池中多个用户的多个任务(例如,微服务)。这使无服务器的云提供商可以通过透明地汇总某个上下文(例如视频处理)的类似任务来减少其资源使用情况,从而共享其整体或部分计算。为此,通过汇总任务来了解省时的时间至关重要。缺乏此类知识可能会导致不知情的合并和调度决策,而这些决定又可能导致违反合并任务或其他以下任务的截止日期。因此,在本文中,我们研究了估计执行时间节省的问题,这是由于在视频处理中将任务与示例合并而产生的。要学习以不同形式的合并形式节省执行时间,我们首先建立了一组基准标准的视频,并检查各种视频处理任务 - 有和不合并。我们观察到,尽管合并可以在执行时间中节省多达44%,但可能的合并案例数量很棘手。因此,在第二部分中,我们利用基准测试结果并开发基于梯度提升决策树(GBDT)的方法来估算任何给定任务合并案例的时间储备。实验结果表明,该方法可以根据均方根误差(RMSE)测量的0.04误差率估算时间储蓄。

Serverless clouds allocate multiple tasks (e.g., micro-services) from multiple users on a shared pool of computing resources. This enables serverless cloud providers to reduce their resource usage by transparently aggregate similar tasks of a certain context (e.g., video processing) that share the whole or part of their computation. To this end, it is crucial to know the amount of time-saving achieved by aggregating the tasks. Lack of such knowledge can lead to uninformed merging and scheduling decisions that, in turn, can cause deadline violation of either the merged tasks or other following tasks. Accordingly, in this paper, we study the problem of estimating execution-time saving resulted from merging tasks with the example in the context of video processing. To learn the execution-time saving in different forms of merging, we first establish a set of benchmarking videos and examine a wide variety of video processing tasks -- with and without merging in place. We observed that although merging can save up to 44% in the execution-time, the number of possible merging cases is intractable. Hence, in the second part, we leverage the benchmarking results and develop a method based on Gradient Boosting Decision Tree (GBDT) to estimate the time-saving for any given task merging case. Experimental results show that the method can estimate the time-saving with the error rate of 0.04, measured based on Root Mean Square Error (RMSE).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源