论文标题

使用未稳定的手机摄像头的介质摄影测量法

Mesoscopic photogrammetry with an unstabilized phone camera

论文作者

Zhou, Kevin C., Cooke, Colin, Park, Jaehee, Qian, Ruobing, Horstmeyer, Roarke, Izatt, Joseph A., Farsiu, Sina

论文摘要

我们提出了一种无功能的摄影测量技术,该技术可实现定量的3D介质(MM尺度高度变化)成像,并从近距离运动中智能手机(几个CM)在徒手运动中获得的图像序列有数十个微调精度,而无需其他硬件。我们的端到端,基于像素强度的方法共同注册并通过估计结合的高度图来缝制所有图像,该图像是一个像素的径向变形场,该图形正向每个摄像机图像构造,以允许同型注册。将高度图本身重新聚集为未经训练的编码器卷积神经网络(CNN)的输出,将原始摄像头图像作为输入,从而有效地消除了许多重建工件。我们的方法还使用非参数模型共同估算相机的动态6D姿势及其失真,而后者在使用未在短工作距离(例如智能手机摄像机)上设计的无用于成像的摄像机时,在介质应用中尤其重要。我们还提出了减少计算时间和内存的策略,适用于其他多框架注册问题。最后,我们使用由未稳定的智能手机捕获的多兆像素图像的序列在各种样品(例如,绘画笔触,电路板,种子)上捕获。

We present a feature-free photogrammetric technique that enables quantitative 3D mesoscopic (mm-scale height variation) imaging with tens-of-micron accuracy from sequences of images acquired by a smartphone at close range (several cm) under freehand motion without additional hardware. Our end-to-end, pixel-intensity-based approach jointly registers and stitches all the images by estimating a coaligned height map, which acts as a pixel-wise radial deformation field that orthorectifies each camera image to allow homographic registration. The height maps themselves are reparameterized as the output of an untrained encoder-decoder convolutional neural network (CNN) with the raw camera images as the input, which effectively removes many reconstruction artifacts. Our method also jointly estimates both the camera's dynamic 6D pose and its distortion using a nonparametric model, the latter of which is especially important in mesoscopic applications when using cameras not designed for imaging at short working distances, such as smartphone cameras. We also propose strategies for reducing computation time and memory, applicable to other multi-frame registration problems. Finally, we demonstrate our method using sequences of multi-megapixel images captured by an unstabilized smartphone on a variety of samples (e.g., painting brushstrokes, circuit board, seeds).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源