论文标题

AI驱动的模拟器的兴起:建立一个新的水晶球

The Rise of AI-Driven Simulators: Building a New Crystal Ball

论文作者

Foster, Ian, Parkes, David, Zheng, Stephan

论文摘要

到目前为止,计算模拟的使用在社会中如此普遍,以至于说持续的美国和国际繁荣,安全和健康并在某种程度上取决于模拟能力的持续改进并不夸张。如果我们可以预测两周的天气,请指导新药物的新药物设计新药物,或者管理新的制造工艺,以将生产成本和时间降低到数量级,该怎么办?如果我们可以预测人类的集体行为,例如,自然灾害期间对疏散请求的反应或对财政刺激的劳动反应怎么办? (另请参见有关大流行信息学的CCC QUC四论文,该论文讨论了解决大规模问题诸如准备和反应的大规模问题至关重要的特征。) 过去的十年在互补领域带来了显着的进步:传感器中,现在可以捕获有关世界的大量数据,以及能够学习从这些数据中提取预测模式的AI方法。这些进步可能会导致计算模拟的新时代,其中使用多种传感器来生成大量数据,AI方法在这些数据中识别模式,而新的AI驱动模拟器结合了机器学习和数学规则,以做出准确且可操作的预测。同时,存在新的挑战 - 在某些重要方面的计算机不再越来越快,在某些领域,我们正在达到数学理解的局限性,或者至少我们将数学理解转化为有效模拟的能力。在本文中,我们列出了一些主题,这些主题是在AI驱动的模拟器上构成具有凝聚力,多学科和应用程序启发的研究议程的一部分。

The use of computational simulation is by now so pervasive in society that it is no exaggeration to say that continued U.S. and international prosperity, security, and health depend in part on continued improvements in simulation capabilities. What if we could predict weather two weeks out, guide the design of new drugs for new viral diseases, or manage new manufacturing processes that cut production costs and times by an order of magnitude? What if we could predict collective human behavior, for example, response to an evacuation request during a natural disaster, or labor response to fiscal stimulus? (See also the companion CCC Quad Paper on Pandemic Informatics, which discusses features that would be essential to solving large-scale problems like preparation for, and response to, the inevitable next pandemic.) The past decade has brought remarkable advances in complementary areas: in sensors, which can now capture enormous amounts of data about the world, and in AI methods capable of learning to extract predictive patterns from those data. These advances may lead to a new era in computational simulation, in which sensors of many kinds are used to produce vast quantities of data, AI methods identify patterns in those data, and new AI-driven simulators combine machine-learned and mathematical rules to make accurate and actionable predictions. At the same time, there are new challenges -- computers in some important regards are no longer getting faster, and in some areas we are reaching the limits of mathematical understanding, or at least of our ability to translate mathematical understanding into efficient simulation. In this paper, we lay out some themes that we envision forming part of a cohesive, multi-disciplinary, and application-inspired research agenda on AI-driven simulators.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源