论文标题

一种与多种治疗混淆的柔性灵敏度分析方法,以及应用于SEER-MEDICARE肺癌数据的二元结果

A flexible sensitivity analysis approach for unmeasured confounding with multiple treatments and a binary outcome with application to SEER-Medicare lung cancer data

论文作者

Hu, Liangyuan, Zou, Jungang, Gu, Chenyang, Ji, Jiayi, Lopez, Michael, Kale, Minal

论文摘要

在没有随机实验的情况下,绘制有关治疗效果的因果推断的关键假设是可忽略的治疗分配。违反无知性假设可能会导致偏见的治疗效果估计。敏感性分析有助于衡量因果关系的潜在偏离性假设的潜在幅度而改变的因果结论。但是,在多种疗法和二元结果的背景下,敏感性分析方法对无法衡量的混杂性是稀缺的。我们提出了一种在这种情况下为因果推断的灵活的蒙特卡洛敏感性分析方法。我们首先得出了由未衡量的混杂引入的偏见的一般形式,重点是与多种治疗的理论特性独特。然后,我们提出了编码未衡量的混杂对潜在结果的影响的方法,并调整了去除假定的未衡量混杂的因果效应的估计。我们提出的方法嵌入了贝叶斯框架中的嵌套多重插补,这允许无缝整合灵敏度参数值和采样可变性的不确定性,并使用贝叶斯添加剂回归树来建模灵活性。广泛的模拟验证了我们的方法,并通过多种治疗方法深入了解灵敏度分析。我们使用SEER-MEDICARE数据使用三种治疗早期非小细胞肺癌来证明灵敏度分析。在R软件包SAMTX中很容易获得这项工作中开发的方法。

In the absence of a randomized experiment, a key assumption for drawing causal inference about treatment effects is the ignorable treatment assignment. Violations of the ignorability assumption may lead to biased treatment effect estimates. Sensitivity analysis helps gauge how causal conclusions will be altered in response to the potential magnitude of departure from the ignorability assumption. However, sensitivity analysis approaches for unmeasured confounding in the context of multiple treatments and binary outcomes are scarce. We propose a flexible Monte Carlo sensitivity analysis approach for causal inference in such settings. We first derive the general form of the bias introduced by unmeasured confounding, with emphasis on theoretical properties uniquely relevant to multiple treatments. We then propose methods to encode the impact of unmeasured confounding on potential outcomes and adjust the estimates of causal effects in which the presumed unmeasured confounding is removed. Our proposed methods embed nested multiple imputation within the Bayesian framework, which allow for seamless integration of the uncertainty about the values of the sensitivity parameters and the sampling variability, as well as use of the Bayesian Additive Regression Trees for modeling flexibility. Expansive simulations validate our methods and gain insight into sensitivity analysis with multiple treatments. We use the SEER-Medicare data to demonstrate sensitivity analysis using three treatments for early stage non-small cell lung cancer. The methods developed in this work are readily available in the R package SAMTx.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源