论文标题
基于空间约束的子空间群集的超级像素分割
Superpixel Segmentation Based on Spatially Constrained Subspace Clustering
论文作者
论文摘要
Superpixel分割旨在将输入图像划分为一些具有相似且一致的内在特性的像素的代表性区域,而没有任何先前了解每个超级像素的形状和大小。在本文中,为了减轻在实用工业任务中应用的超像素细分的局限性,难以保留详细的边界,我们将每个具有独立语义信息的代表性区域视为一个子空间,并相应地将Superpixel细分作为子空间集群问题,以保护更多详细的内容边界。我们表明,由于超像素在超像素内的像素的空间相关性,超级像素分割与常规子空间聚类的简单集成无效,当相关忽略时,这可能会导致边界混淆和分割误差。因此,我们设计了一个空间正则化,并提出了一种新型的凸被局部性限制的子空间聚类模型,该模型能够约束具有相似属性的空间相邻像素,以将其聚集到超级像素中,并生成内容与内容相关的超级像素,并具有更详细的界限。最后,通过有效的乘数交替方向方法(ADMM)求解器来求解所提出的模型。在不同标准数据集上的实验表明,与某些最先进的方法相比,所提出的方法在定量和定性上取得了出色的性能。
Superpixel segmentation aims at dividing the input image into some representative regions containing pixels with similar and consistent intrinsic properties, without any prior knowledge about the shape and size of each superpixel. In this paper, to alleviate the limitation of superpixel segmentation applied in practical industrial tasks that detailed boundaries are difficult to be kept, we regard each representative region with independent semantic information as a subspace, and correspondingly formulate superpixel segmentation as a subspace clustering problem to preserve more detailed content boundaries. We show that a simple integration of superpixel segmentation with the conventional subspace clustering does not effectively work due to the spatial correlation of the pixels within a superpixel, which may lead to boundary confusion and segmentation error when the correlation is ignored. Consequently, we devise a spatial regularization and propose a novel convex locality-constrained subspace clustering model that is able to constrain the spatial adjacent pixels with similar attributes to be clustered into a superpixel and generate the content-aware superpixels with more detailed boundaries. Finally, the proposed model is solved by an efficient alternating direction method of multipliers (ADMM) solver. Experiments on different standard datasets demonstrate that the proposed method achieves superior performance both quantitatively and qualitatively compared with some state-of-the-art methods.