论文标题
几个没有元学习的射击分段:您需要的全部良好的托管推理吗?
Few-Shot Segmentation Without Meta-Learning: A Good Transductive Inference Is All You Need?
论文作者
论文摘要
我们表明,在几次分段任务中执行推理的方式对性能有实质性的影响 - 在文献中通常忽略了元学习范式的方面。我们通过优化包含三个互补术语的新损失,利用其未标记像素的统计来介绍给定查询图像的跨性推断:i)标记为支持的支撑像素上的跨凝集; ii)在未标记的查询图像像素上,后士的香农熵; iii)基于预测前景的比例,全球kl-divergence正常化程序。由于我们的推理使用提取功能的简单线性分类器,因此其计算负载与电感推理相当,并且可以在任何基本训练的顶部使用。在1次场景中,我们的推理已经预言了情节训练并仅在基本类别上使用标准的跨透明培训,在1次场景中可以在标准基准测试中表现竞争性表演。随着可用镜头数量的增加,性能的差距扩大了:在Pascal-5i上,我们的方法在5次和10次的情况下,分别比最先进的方法提高了约5%和6%的改善。此外,我们引入了一个新的设置,其中包括域移动,其中基本和新颖的类是从不同数据集绘制的。我们的方法在更现实的环境中取得了最佳性能。我们的代码可在线免费获得:https://github.com/mboudiaf/repri-for-few-shot-mentementation。
We show that the way inference is performed in few-shot segmentation tasks has a substantial effect on performances -- an aspect often overlooked in the literature in favor of the meta-learning paradigm. We introduce a transductive inference for a given query image, leveraging the statistics of its unlabeled pixels, by optimizing a new loss containing three complementary terms: i) the cross-entropy on the labeled support pixels; ii) the Shannon entropy of the posteriors on the unlabeled query-image pixels; and iii) a global KL-divergence regularizer based on the proportion of the predicted foreground. As our inference uses a simple linear classifier of the extracted features, its computational load is comparable to inductive inference and can be used on top of any base training. Foregoing episodic training and using only standard cross-entropy training on the base classes, our inference yields competitive performances on standard benchmarks in the 1-shot scenarios. As the number of available shots increases, the gap in performances widens: on PASCAL-5i, our method brings about 5% and 6% improvements over the state-of-the-art, in the 5- and 10-shot scenarios, respectively. Furthermore, we introduce a new setting that includes domain shifts, where the base and novel classes are drawn from different datasets. Our method achieves the best performances in this more realistic setting. Our code is freely available online: https://github.com/mboudiaf/RePRI-for-Few-Shot-Segmentation.