论文标题
Carleson在凸域上的措施
Carleson measures on convex domains
论文作者
论文摘要
遵循M.Abate和A.Saracco在$ \ Mathbb {C}^n $中强烈的pseudoconvex域进行的工作,我们表征了Carleson的测量$ a^2(d)$,具有有限类型的平滑边界。我们还提供了Carleson度量的例子,该措施具有均匀离散(相对于Kobayashi距离)序列。
Following M.Abate and A.Saracco's work on strongly pseudoconvex domains in $\mathbb{C}^n$, we characterize Carleson measures of $A^2(D)$ in bounded convex domains with smooth boundary of finite type. We also give examples of Carleson measures with uniformly discrete (with respect to the Kobayashi distance) sequences.