论文标题

使用组稀疏学习从数据中学习物理一致的数学模型

Learning physically consistent mathematical models from data using group sparsity

论文作者

Maddu, Suryanarayana, Cheeseman, Bevan L., Müller, Christian L., Sbalzarini, Ivo F.

论文摘要

我们提出了一个基于群 - 帕斯斯回归的统计学习框架,该框架可用于1)执行保护定律,2)确保模型等效性,3)在从测量数据中学习或推断出差分方程模型时保证对称性。直接学习来自数据的$ \ textit {可解释} $数学模型已成为一种有价值的建模方法。但是,在生物学,高噪声水平,传感器诱导的相关性和强大的系统变异性等领域,可以使数据驱动的模型非敏感或物理上不一致,而没有对模型结构的其他限制。因此,重要的是要利用$ \ textIt {prient} $知识从物理原理中学习“生物学上合理且物理上一致”的模型,而不是简单地适合数据的模型。我们提出了一种新型的组迭代硬阈值(GIHT)算法,并使用稳定性选择来推断具有最小参数调整的物理一致模型。我们从系统生物学中显示了几种应用程序,这些应用程序证明了在数据驱动的建模中强制执行$ \ textit {priors} $的好处。

We propose a statistical learning framework based on group-sparse regression that can be used to 1) enforce conservation laws, 2) ensure model equivalence, and 3) guarantee symmetries when learning or inferring differential-equation models from measurement data. Directly learning $\textit{interpretable}$ mathematical models from data has emerged as a valuable modeling approach. However, in areas like biology, high noise levels, sensor-induced correlations, and strong inter-system variability can render data-driven models nonsensical or physically inconsistent without additional constraints on the model structure. Hence, it is important to leverage $\textit{prior}$ knowledge from physical principles to learn "biologically plausible and physically consistent" models rather than models that simply fit the data best. We present a novel group Iterative Hard Thresholding (gIHT) algorithm and use stability selection to infer physically consistent models with minimal parameter tuning. We show several applications from systems biology that demonstrate the benefits of enforcing $\textit{priors}$ in data-driven modeling.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源