论文标题
针对个性化的大脑功能网络识别的无监督深度学习
Unsupervised deep learning for individualized brain functional network identification
论文作者
论文摘要
开发了一种新颖的无监督深度学习方法,以识别以端到端学习方式从静止状态fMRI(RSFMRI)中识别出特定的大型大型大脑功能网络(FNS)。我们的方法利用了深层编码器网络和常规的大脑分解模型来识别无监督的学习框架中的个体特异性FN,并促进了具有深层网络的一个正向传球的新个体的快速推断。特别是,采用了具有编码器解码器结构的卷积神经网络(CNN),以通过优化在脑分解模型中通常使用的数据拟合和稀疏正则术语来从RSFMRI数据中识别单个特定的FN。此外,时间不变的表示模块旨在学习RSFMRI数据的时间点不变的功能。提出的方法已根据大型RSFMRI数据集进行了验证,实验结果表明,我们的方法可以获得个体特异性的FN,这些FN与已建立的FNS一致,并且可以预测大脑年龄的信息,这表明个体特异性的FNS被确定确定的个体功能功能性神经疗法的可变性。
A novel unsupervised deep learning method is developed to identify individual-specific large scale brain functional networks (FNs) from resting-state fMRI (rsfMRI) in an end-to-end learning fashion. Our method leverages deep Encoder-Decoder networks and conventional brain decomposition models to identify individual-specific FNs in an unsupervised learning framework and facilitate fast inference for new individuals with one forward pass of the deep network. Particularly, convolutional neural networks (CNNs) with an Encoder-Decoder architecture are adopted to identify individual-specific FNs from rsfMRI data by optimizing their data fitting and sparsity regularization terms that are commonly used in brain decomposition models. Moreover, a time-invariant representation learning module is designed to learn features invariant to temporal orders of time points of rsfMRI data. The proposed method has been validated based on a large rsfMRI dataset and experimental results have demonstrated that our method could obtain individual-specific FNs which are consistent with well-established FNs and are informative for predicting brain age, indicating that the individual-specific FNs identified truly captured the underlying variability of individualized functional neuroanatomy.