论文标题

通过线性双曲系统建模的波传播的分裂形式,稳定的CG/DG-SEM

A Split-Form, Stable CG/DG-SEM for Wave Propagation Modeled by Linear Hyperbolic Systems

论文作者

Kopriva, David A., Gassner, Gregor J.

论文摘要

我们提出了一个混合连续和不连续的彩色光谱元件近似,该光谱元素近似利用了每种方法的优势。连续的Galerkin近似值用于方程属性连续的内部元素面部。在物理边界上使用不连续的Galerkin近似值,如果面部的性质有跳跃。近似使用方程式和两点通量的拆分形式,以确保具有弯曲元件的非结构化四边形/六面体网格的稳定性。近似值也是保守和恒定的状态,可在此类网格上保存。对于所有示例,都可以获得光谱精度,其中包括在不连续的中边界处的波散射。

We present a hybrid continuous and discontinuous Galerkin spectral element approximation that leverages the advantages of each approach. The continuous Galerkin approximation is used on interior element faces where the equation properties are continuous. A discontinuous Galerkin approximation is used at physical boundaries and if there is a jump in properties at a face. The approximation uses a split form of the equations and two-point fluxes to ensure stability for unstructured quadrilateral/hexahedral meshes with curved elements. The approximation is also conservative and constant state preserving on such meshes. Spectral accuracy is obtained for all examples, which include wave scattering at a discontinuous medium boundary.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源