论文标题

使用KPIC II期增强的高分散性冠状动脉:亚型的设计,组装和状态

Enhanced high-dispersion coronagraphy with KPIC phase II: design, assembly and status of sub-modules

论文作者

Jovanovic, N., Calvin, B., Porter, M., Schofield, T., Wang, J., Roberts, M., Ruane, G., Wallace, J. K., Bartos, R., Pezzato, J., Colborn, J., Delorme, J. R., Echeverri, D., Mawet, D., Bond, C. Z., Cetre, S., Lilley, S., Ragland, S., Wizinowich, P., Jensen-Clem, R.

论文摘要

Keck Planet Imager和Truniber(KPIC)是Keck上K和L乐队中高分散性冠状动脉的专用工具。该仪器将提供第一个高分辨率(R $> $ 30,000)的光谱,该光谱在北半球可见直接成像的系外行星和低质量的棕色矮人伴侣。 KPIC是分阶段开发的。第一阶段目前在凯克(Keck)的早期运营阶段,第二阶段升级将在2021年末部署。第二阶段的目标是最大化行星光的吞吐量,并最大程度地减少恒星泄漏,从而减少以给定的信号噪声比率获得的敞口时间。为了实现这一目标,KPIC II阶段利用了以前从未使用过这种方式的几种创新技术。这些包括用于波前校正和斑点控制的1000个元素可变形镜,一组无损光束构造光学镜,以最大化耦合到纤维中,这是一种抑制不需要的星光的瞳孔apodizer,抑制不需要的瞳孔涡流蒙面,以启用在差异限制范围内的光谱范围,并在差异限制范围内获得了大气限制和大气的分配。这些模块与第一阶段的活动纤维注入单元结合使用时,将建立一个高效的系外行星表征平台。 在本文中,我们将介绍光学和光学力学的最终设计,并突出显示我们实施的一些创新解决方案,以促进所有新功能。我们将概述子模块的组装和实验室测试以及一些结果。最后,我们将概述部署时间表。

The Keck Planet Imager and Characterizer (KPIC) is a purpose-built instrument for high-dispersion coronagraphy in the K and L bands on Keck. This instrument will provide the first high resolution (R$>$30,000) spectra of known directly imaged exoplanets and low-mass brown dwarf companions visible in the northern hemisphere. KPIC is developed in phases. Phase I is currently at Keck in the early operations stage, and the phase II upgrade will deploy in late 2021. The goal of phase II is to maximize the throughput for planet light and minimize the stellar leakage, hence reducing the exposure time needed to acquire spectra with a given signal-to-noise ratio. To achieve this, KPIC phase II exploits several innovative technologies that have not been combined this way before. These include a 1000-element deformable mirror for wavefront correction and speckle control, a set of lossless beam shaping optics to maximize coupling into the fiber, a pupil apodizer to suppress unwanted starlight, a pupil plane vortex mask to enable the acquisition of spectra at and within the diffraction limit, and an atmospheric dispersion compensator. These modules, when combined with the active fiber injection unit present in phase I, will make for a highly efficient exoplanet characterization platform. In this paper, we will present the final design of the optics and opto-mechanics and highlight some innovative solutions we implemented to facilitate all the new capabilities. We will provide an overview of the assembly and laboratory testing of the sub-modules and some of the results. Finally, we will outline the deployment timeline.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源