论文标题

一种用于定位救护车的多周期和双目标方法:巴西贝洛·高利福特的案例研究

A multi-period and bi-objective approach for locating ambulances: a case study in Belo Horizonte, Brazil

论文作者

de Oliveira, Charles Paulino, de Sá, Elisangela Martins, Martins, Flávio Vinícius Cruzeiro

论文摘要

这项工作旨在将设施位置问题应用于巴西Belo Horizo​​nte的紧急医疗服务(EMS)。目的是从文献中改善两个以前的优化模型来处理基础位置和救护车分配/重新分配问题。提出的多个周期模型介绍了搬迁到本地EMS的概念,这使救护车可以在不同时期之间在基地之间移动以提高系统覆盖范围。本文还提出了一种双向目标方法,旨在最大程度地减少碱的数量并最大程度地提高需求的覆盖范围,该方法是使用Epsilon-Constraint方法解决的。结果表明,确定性方法的覆盖范围最多增加31%,而对于概率方法,覆盖率最多增加了24%。对于确定性方法,救护车的重新定位优化可能会提高21%的覆盖范围,而对于从静态到多个期限的变化方案时,概率方法最多可提高覆盖率。同样,由于多周期模型解决方案会导致安装大量基础,因此双向目标是决策者的强大工具。双目标结果表明,当确定性方法的电台数量超过28时,目标函数的适度增量。目标函数中的概率方法的增加开始狭窄以上30个安装的站点。

This work aims to apply the Facility Location Problem in the Emergency Medical Service (EMS) of Belo Horizonte, Brazil. The objective is to improve two previous optimization models from literature to handle base locations and ambulances allocation/relocation problems. The proposed multi-period models introduce the concept of relocation to the local EMS, which allows ambulances to move among bases in different periods to raise the system coverage. This paper also proposes a bi-objective approach aiming to minimize the number of bases and maximize the coverage of demands, which is solved using the epsilon-constraint method. Results show that coverage levels increase by up to 31% for the deterministic approach and up to 24% for the probabilistic approach. Ambulances' relocation optimization might improve coverage levels by up to 21% for the deterministic approach and up to 15% for the probabilistic approach when change scenarios from static to multi-period. Also, since the multi-period model solutions result in installing a larger number of bases, the bi-objective approach is a powerful tool for the decision-maker. Bi-objective results suggest modest increments in the objective function when the stations' number exceeds 28 for the deterministic approach. The probabilistic approach increments in the objective function start to narrow above 30 installed stations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源