论文标题

多尺度级联网络具有紧凑的功能学习,用于RGB-Infrared人重新识别

Multi-Scale Cascading Network with Compact Feature Learning for RGB-Infrared Person Re-Identification

论文作者

Zhang, Can, Liu, Hong, Guo, Wei, Ye, Mang

论文摘要

RGB - 信号人员重新识别(RGB-IR RE-ID)的目的是匹配可见光和热摄像机捕获的异质图像的人,这在较差的光条件下在监视系统中具有重要意义。在复杂差异中面临重大挑战,包括常规的单模式和其他模式间差异,大多数现有的RGB-IR RE-ID方法都建议在图像级别,特征级别或两者的混合体中施加约束。尽管混合限制的性能更好,但它们通常通过重型网络体系结构实现。实际上,随着开拓性在新的跨模式重新ID地区工作,同时留下了很大的改进空间,因此以前的努力做出了更多的贡献。这主要归因于:(1)缺乏来自不同训练方式的人的图像对,以及(2)稀缺的显着模态不变性特征,尤其是在粗略表示方面以进行有效匹配。为了解决这些问题,通过以级联的方式将多尺度的级联级联框架(MSPAC)汇总到全球的多尺度细粒度特征来制定,从而使统一的表示具有丰富和增强的语义特征,从而提出了一种新颖的多尺度零件感知级联框架(MSPAC)。此外,引入边际指数中心(MECEN)损失是共同消除模式内和模式间例子的混合方差。因此,可以在明显的特征上有效地探索跨模式相关性,以实现独特的模态不变特征学习。进行了广泛的实验,以证明所提出的方法的表现要优于所有最先进的方法。

RGB-Infrared person re-identification (RGB-IR Re-ID) aims to match persons from heterogeneous images captured by visible and thermal cameras, which is of great significance in the surveillance system under poor light conditions. Facing great challenges in complex variances including conventional single-modality and additional inter-modality discrepancies, most of the existing RGB-IR Re-ID methods propose to impose constraints in image level, feature level or a hybrid of both. Despite the better performance of hybrid constraints, they are usually implemented with heavy network architecture. As a matter of fact, previous efforts contribute more as pioneering works in new cross-modal Re-ID area while leaving large space for improvement. This can be mainly attributed to: (1) lack of abundant person image pairs from different modalities for training, and (2) scarcity of salient modality-invariant features especially on coarse representations for effective matching. To address these issues, a novel Multi-Scale Part-Aware Cascading framework (MSPAC) is formulated by aggregating multi-scale fine-grained features from part to global in a cascading manner, which results in a unified representation containing rich and enhanced semantic features. Furthermore, a marginal exponential centre (MeCen) loss is introduced to jointly eliminate mixed variances from intra- and inter-modal examples. Cross-modality correlations can thus be efficiently explored on salient features for distinctive modality-invariant feature learning. Extensive experiments are conducted to demonstrate that the proposed method outperforms all the state-of-the-art by a large margin.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源