论文标题

LiveChess2fen:基于CNN的国际象棋棋子的框架

LiveChess2FEN: a Framework for Classifying Chess Pieces based on CNNs

论文作者

Quintana, David Mallasén, García, Alberto Antonio del Barrio, Matías, Manuel Prieto

论文摘要

使用计算机视觉对国际象棋游戏进行自动数字化是一个重大的技术挑战。对于比赛的组织者和业余或专业球员来说,这个问题引起了人们的关注,可以在线广播其板球(OTB)游戏或使用国际象棋引擎分析它们。先前的工作显示出令人鼓舞的结果,但是识别准确性和最先进技术的延迟仍然需要进一步的增强,以实现其实用和负担得起的部署。我们已经研究了如何有效地在NVIDIA Jetson Nano单板计算机上实施它们。我们的第一个贡献是加速了棋盘的检测算法。随后,我们分析了不同的卷积神经网络,以进行国际象棋分类以及如何在嵌入式平台上有效地绘制它们。值得注意的是,我们已经实施了一个功能框架,该框架在不到1秒钟内从图像中自动数字化国际象棋位置,在对零件进行分类时,在检测到板时的精度为92%。

Automatic digitization of chess games using computer vision is a significant technological challenge. This problem is of much interest for tournament organizers and amateur or professional players to broadcast their over-the-board (OTB) games online or analyze them using chess engines. Previous work has shown promising results, but the recognition accuracy and the latency of state-of-the-art techniques still need further enhancements to allow their practical and affordable deployment. We have investigated how to implement them on an Nvidia Jetson Nano single-board computer effectively. Our first contribution has been accelerating the chessboard's detection algorithm. Subsequently, we have analyzed different Convolutional Neural Networks for chess piece classification and how to map them efficiently on our embedded platform. Notably, we have implemented a functional framework that automatically digitizes a chess position from an image in less than 1 second, with 92% accuracy when classifying the pieces and 95% when detecting the board.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源