论文标题

通用时间序列中独立性的班次测试

A Shift Test for Independence in Generic Time Series

论文作者

Harris, Kenneth D.

论文摘要

我们描述了一个保守的统计测试家庭,以实现两个自相关时间序列的独立性。该系列可能在任何集合中都具有值,其中之一必须是固定的。将两个系列段关联的用户指定函数与通过将固定系列-n到n步骤获得的集合进行比较。如果该系列是独立的,则未缩放值在最高的M移位值中,最多概率为m/(n+1)。对于大N,概率接近m/(2n+1)。如果未降低值在顶部α(n+1)中,则保守测试将拒绝具有显着性α的独立性,并且具有在较大的N极限下有效的近似测试的一半。我们通过测试自相关分类时间序列的测试来说明此框架。

We describe a family of conservative statistical tests for independence of two autocorrelated time series. The series may take values in any sets, and one of them must be stationary. A user-specified function quantifying the association of a segment of the two series is compared to an ensemble obtained by time-shifting the stationary series -N to N steps. If the series are independent, the unshifted value is in the top m shifted values with probability at most m/(N+1). For large N, the probability approaches m/(2N+1). A conservative test rejects independence at significance α if the unshifted value is in the top α(N+1), and has half the power of an approximate test valid in the large N limit. We illustrate this framework with a test for correlation of autocorrelated categorical time series.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源