论文标题

表征人们在城市环境中的日常活动模式:具有地理上下文感知的Twitter数据的移动网络方法

Characterizing People's Daily Activity Patterns in the Urban Environment: A Mobility Network Approach with Geographic Context-Aware Twitter Data

论文作者

Yin, Junjun, Chi, Guangqing

论文摘要

人们在城市环境中的日常活动很复杂,并且因个人而异。使用手机数据的现有研究揭示了人们日常生活中独特而经常的过渡活动模式,称为流动性图案。但是,仅使用几种推断活动类型的限制阻碍了我们详细检查一般模式的能力。我们提出了一种具有地理环境感知的Twitter数据的移动网络方法,以研究城市环境中的颗粒状日常活动模式。我们首先利用公开访问的地理位置推文来跟踪美国两个主要城市的个人的运动:芝加哥和大波士顿,每个记录的位置都与其最接近的土地使用包裹相关联,以丰富其地理环境。直接移动网络代表所选活动用户的日常位置历史记录,该节点是具有语义标记活动类型的物理位置,边缘代表过渡。分析迁移率网络的同构结构发现了16种基于位置的基序,这些基础图描述了两个城市中83%的网络,并且与以前的研究相媲美。每两项活动之间的详细和语义标记的过渡,我们进一步将基于位置的基础基序进一步剖析到基于活动的基础上,其中16个常见的基于活动的主题描述了两个城市的日常活动中超过57%的过渡行为。地理环境从合成地理位置的Twitter数据与土地使用包裹的整合使我们能够揭示构成复杂城市活动中嵌入的基本要素的独特活动图案。

People's daily activities in the urban environment are complex and vary by individuals. Existing studies using mobile phone data revealed distinct and recurrent transitional activity patterns, known as mobility motifs, in people's daily lives. However, the limitation in using only a few inferred activity types hinders our ability to examine general patterns in detail. We proposed a mobility network approach with geographic context-aware Twitter data to investigate granular daily activity patterns in the urban environment. We first utilized publicly accessible geo-located tweets to track the movements of individuals in two major U.S. cities: Chicago and Greater Boston, where each recorded location is associated with its closest land use parcel to enrich its geographic context. A direct mobility network represents the daily location history of the selected active users, where the nodes are physical places with semantically labeled activity types, and the edges represent the transitions. Analyzing the isomorphic structure of the mobility networks uncovered 16 types of location-based motifs, which describe over 83% of the networks in both cities and are comparable to those from previous studies. With detailed and semantically labeled transitions between every two activities, we further dissected the general location-based motifs into activity-based motifs, where 16 common activity-based motifs describe more than 57% transitional behaviors in the daily activities in the two cities. The integration of geographic context from the synthesis of geo-located Twitter data with land use parcels enables us to reveal unique activity motifs that form the fundamental elements embedded in complex urban activities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源