论文标题
n = 4 chern-simons-matter理论的Hyperloops上的注释
Notes on hyperloops in N=4 Chern-Simons-matter theories
论文作者
论文摘要
我们在三维n = 4 Quiver Chern-Simons-Matter理论中提出了新的圆形Wilson循环。在箭袋的任何给定节点上,可以通过及时畸形1/4 bps gaiotto-yin循环来获得两参数的操作员家族。包括随后的相邻节点,连接到双叉物质字段的耦合可以扩大该家族并基于超级连接来构建循环操作员。我们讨论他们的分类,该分类既取决于离散数据和持续参数,但要受到识别。所得的模量空间是圆锥形的歧管,类似于ABJ(M)理论的1/6 BPS回路的conifold。
We present new circular Wilson loops in three-dimensional N=4 quiver Chern-Simons-matter theory on S^3. At any given node of the quiver, a two-parameter family of operators can be obtained by opportunely deforming the 1/4 BPS Gaiotto-Yin loop. Including then adjacent nodes, the coupling to the bifundamental matter fields allows to enlarge this family and to construct loop operators based on superconnections. We discuss their classification, which depends on both discrete data and continuous parameters subject to an identification. The resulting moduli spaces are conical manifolds, similar to the conifold of the 1/6 BPS loops of the ABJ(M) theory.