论文标题

任何多指数序列都有一个插值度量

Any multi-index sequence has an interpolating measure

论文作者

Choi, Hayoung, Yoo, Seonguk

论文摘要

R. P. Boas表明,任何单个索引序列$ \ left \ {β_i\ right \} _ {i = 0}^\ infty $可以表示为$β_i= \ int_0^\ int_0^\ int_0^\ int_0^\ int_0^\ infty x^i \,dμ$($ i = 0,1,1,2,\ ldots $)正如Boas所说,他的观察似乎是非常出乎意料的。但是,甚至可以将结果扩展到任何实数的多指数序列。此外,我们还可以证明任何多指数有限序列都可以接受类似类型的度量。

R. P. Boas showed that any single-index sequence $\left\{ β_i \right\}_{i=0}^\infty$ of real numbers can be represented as $β_i =\int_0^\infty x^i \, dμ$ ($i=0,1,2,\ldots$), where $μ$ is a signed measure. As Boas said his observation seemed to be quite unexpected; however, it is even possible to extend the result to any multi-index sequence of real numbers. In addition, we can also prove that any multi-index finite sequence admits a measure of a similar type.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源