论文标题

集合理论和阶级理论中的子集关系和$ 2 $ strattatified句子

The subset relation and $2$-stratified sentences in set theory and class theory

论文作者

McKenzie, Zachiri

论文摘要

Hamkins and Kikuchi(2016和2017)表明,在集合理论和阶级理论中,宇宙的可定义子集排序解释了完整而可决定的理论。如果$ \ MATHCAL {M} $是集合理论的模型,则$ \ langle m,\ subseteq^\ Mathcal {M} \ rangle $是一种原子无界的相对辅助分布晶格。如果$ \ MATHCAL {M} $是类理论的模型,则$ \ langle M,\ subseteq^\ Mathcal {M} \ rangle $是无限的原子boolean代数。我们确定$ \ mathrm {zf} $,$ \ mathrm {bas} $的最小子系统,该系统可确保可定义的子集关系是一种原子不绑定的分布晶格,并对原子相对互补的晶格进行分类,并将原子相对互补的分布式分布式分布,可以实现这一理论的关系。原子无界的相对补充的晶格的理论已完成,以表明$ \ mathrm {bas} $决定了集合理论的每$ 2 $ strattratified句子。我们还确定了$ \ mathrm {nbg} $,$ \ mathrm {BACRM {BACRM {BACRM {BACRM {BACRM {BACRM {BACRM {BACRM {BACRM {BACRM {BACRM {BACRM {BACRM {BACRM {BACRM {BACRM {BACRM {BACRM {BAC)的最小子系统,该系统可确保可定义的子集关系是无限的原子布尔代数。我们表明,有一个完整的扩展名,$ \ mathrm {iaba} _ \ mathrm {ifeal} $,无限原子布尔代数的理论和一个扩展名$ \ mathrm {bac}^+$ of Mathrm {bacrm {bacrm {bac {bac} $ quast $ i is of Maths of $ \ maths的模型{bac}^+$ $ \ MATHRM {BAC}^+$,然后$ \ langle m,\ Mathcal {s}^\ Mathcal {M},\ subseteq^\ Mathcal {M} \ rangle $是$ \ MATHRM {iaba} _ {iaba} _ { $ \ MATHCAL {S}^\ MATHCAL {M} $是一个单一谓词,将设置与类区分开。这用于表明$ \ mathrm {bac}^+$,$ \ mathrm {nbg} $的子系统,在类理论的语言中决定每一个$ 2 $ - 句子,其中包括一个单位谓词与类别的区分集合。

Hamkins and Kikuchi (2016 and 2017) show that in both set theory and class theory the definable subset ordering of the universe interprets a complete and decidable theory. If $\mathcal{M}$ is a model of set theory, then $\langle M, \subseteq^\mathcal{M} \rangle$ is an atomic unbounded relatively complemented distributive lattice. If $\mathcal{M}$ is model of class theory, then $\langle M, \subseteq^\mathcal{M} \rangle$ is an infinite atomic boolean algebra. We identify the minimal subsystem of $\mathrm{ZF}$, $\mathrm{BAS}$, that ensures that the definable subset relation is an atomic unbounded relatively complemented distributive lattice and classify the atomic unbounded relatively complemented distributive lattices that can be realised as a subset relations of this theory. The fact that the theory of atomic unbounded relatively complemented distributive lattices is complete is used to show that $\mathrm{BAS}$ decides every $2$-stratified sentence of set theory. We also identify the minimal subsystem of $\mathrm{NBG}$, $\mathrm{BAC}$, that ensures that the definable subset relation is an infinite atomic Boolean algebra. We show that there is a complete extension, $\mathrm{IABA}_\mathrm{Ideal}$, of the theory of infinite atomic boolean algebras and an extension $\mathrm{BAC}^+$ of $\mathrm{BAC}$ corresponding to the minimal theory such that if $\mathcal{M}$ is a model of $\mathrm{BAC}^+$, then $\langle M, \mathcal{S}^\mathcal{M}, \subseteq^\mathcal{M} \rangle$ is a model of $\mathrm{IABA}_{\mathrm{Ideal}}$, where $\mathcal{S}^\mathcal{M}$ is a unary predicate that distinguishes sets from classes. This is used to show that $\mathrm{BAC}^+$, a subsystem of $\mathrm{NBG}$, decides every $2$-sentence in the language of class theory that includes a unary predicate distinguishing sets from classes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源