论文标题
分类分布的形态
Morphology on categorical distributions
论文作者
论文摘要
分类分布是多级分割中不确定性的自然表示。在两类的情况下,分类分布将减少到Bernoulli分布,为此,灰度形态提供了一系列有用的操作。在一般情况下,在不确定的多级分段上应用形态学操作并不直接,因为分类分布的图像不是完整的晶格。尽管颜色图像上的形态引起了广泛的关注,但对于颜色编码或分类图像而言,这并不是如此,对于分类分布的图像而言,这并不是如此。在这项工作中,我们通过将经典形态与概率的观点相结合,为分类分布建立了一系列对分类分布的要求。然后,我们定义尊重这些要求的操作员,对分类分布进行受保护的操作,并说明这些操作员在两个示例任务上的实用性:建模注释者偏置在脑肿瘤分段中的偏差,并从多级U-NET的预测中分割囊泡实例。
The categorical distribution is a natural representation of uncertainty in multi-class segmentations. In the two-class case the categorical distribution reduces to the Bernoulli distribution, for which grayscale morphology provides a range of useful operations. In the general case, applying morphological operations on uncertain multi-class segmentations is not straightforward as an image of categorical distributions is not a complete lattice. Although morphology on color images has received wide attention, this is not so for color-coded or categorical images and even less so for images of categorical distributions. In this work, we establish a set of requirements for morphology on categorical distributions by combining classic morphology with a probabilistic view. We then define operators respecting these requirements, introduce protected operations on categorical distributions and illustrate the utility of these operators on two example tasks: modeling annotator bias in brain tumor segmentations and segmenting vesicle instances from the predictions of a multi-class U-Net.