论文标题
与Wahlquist度量的无质量标量粒子
A massless scalar particle coupled to the Wahlquist metric
论文作者
论文摘要
我们研究了波方程的溶液,其中无质量标量场与wahlquist度量型(型D型溶液)耦合。我们首先采用完整的度量标准,然后通过在公制中获取一些常数来简化度量。当我们不将指标中的任何任意常数等同于零时,我们发现该解决方案是根据一般heun函数给出的,除了一些简单的函数乘以该解决方案。如果我们将$ q_0 $或$ a_1 $的常数之一等同于零,这也是事实。当与螺母相关的常数$ a_1 $和$ q_0 $均为零时,单一汇合heun函数就是解决方案。当我们还将常数$ν_0$等同于零时,我们将获得双汇合heun型解决方案。在后两种情况下,我们有一个指数和两个单元升高,以乘以HEUN类型函数。因此,我们概括了Batic等人。该指标类型D指标的结果,并表明Wahlquist指标的所有变化都提供了HEUN类型解决方案。
We study the solutions of the wave equation where a massless scalar field is coupled to the Wahlquist metric, a type-D solution. We first take the full metric and then write simplifications of the metric by taking some of the constants in the metric null. When we do not equate any of the arbitrary constants in the metric to zero, we find the solution is given in terms of the general Heun function, apart from some simple functions multiplying this solution. This is also true, if we equate one of the constants $Q_0$ or $a_1$ to zero. When both the NUT-related constant $a_1$ and $Q_0$ are zero, the singly confluent Heun function is the solution. When we also equate the constant $ν_0$ to zero, we get the double confluent Heun-type solution. In the latter two cases, we have an exponential and two monomials raised to powers multiplying the Heun type function. Thus, we generalize the Batic et al. result for type-D metrics for this metric and show that all variations of the Wahlquist metric give Heun type solutions.