论文标题

硅和硼掺杂剂如何控制N型GAA的低温闪烁特性

How Silicon and Boron Dopants Govern the Cryogenic Scintillation Properties of N-type GaAs

论文作者

Derenzo, Stephen, Bourret, Edith, Frank-Rotsch, Christiane, Hanrahan, Stephen, Garcia-Sciveresa, Maurice

论文摘要

本文是第一份报告,描述了硅和硼的浓度如何控制N型GAA的低温闪烁特性。它表明,价带孔迅速被困在辐射中心上,然后以速率与硅供体带电子的辐射结合,以随着游离载体的密度而增加。它还介绍了在X射线激发下有效的光发射所需的硅和硼浓度的范围,它们及其低带隙以及明显的余辉缺乏,使闪烁的GAA适用于检测稀有的,低能量的电子激励,从相互作用的暗物质颗粒中进行。研究了来自四个不同供应商的29个样本。测量了以860、930、1070和1335 nm以及总排放量为中心的四个主要发射带的亮度和计时响应。由超快速激光器驱动的光激发X射线管提供了40 kVp X射线的激发脉冲。使用INGAAS光电塑料测量了800至1350 nm的闪烁排放。在2 x 10^16/cm3到6 x 10^17/cm3的游离载体的浓度范围内,从1.5 x 10^18/cm3到6 x 10^18/cm3的硼,有9个样品具有亮度> 70个光子/keV,而两个样品具有亮度> 110 photons/kev。由于非辐射性中心浓度较高,该范围内的其他样品具有较低的亮度。随着自由载体浓度从10^17/cm3增加到2 x 10^18/cm3,衰减时间通常减少10倍。

This paper is the first report describing how the concentrations of silicon and boron govern the cryogenic scintillation properties of n-type GaAs. It shows that valence band holes are promptly trapped on radiative centers and then combine radiatively with silicon donor band electrons at rates that increase with the density of free carriers. It also presents the range of silicon and boron concentrations needed for efficient light emission under X-ray excitation, which along with its low band gap and apparent absence of afterglow, make scintillating GaAs suitable for the detection of rare, low-energy electronic excitations from interacting dark matter particles. A total of 29 samples from four different suppliers were studied. Luminosities and timing responses were measured for the four principal emission bands centered at 860, 930, 1070, and 1335 nm, and for the total emissions. Excitation pulses of 40 kVp X-rays were provided by a light-excited X-ray tube driven by an ultra-fast laser. Scintillation emissions from 800 to 1350 nm were measured using an InGaAs photomultiplier. Within the concentration ranges of free carriers from 2 x 10^16/cm3 to 6 x 10^17/cm3 and boron from 1.5 x 10^18/cm3 to 6 x 10^18/cm3, nine samples have luminosities > 70 photons/keV and two have luminosities > 110 photons/keV. Other samples in that range have lower luminosities due to higher concentrations of non-radiative centers. The decay times decrease by typically a factor of ten with increasing free carrier concentrations from 10^17/cm3 to 2 x 10^18/cm3.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源