论文标题
利用转移学习以在越南SNS(Reintel)上进行可靠的情报识别
Leveraging Transfer Learning for Reliable Intelligence Identification on Vietnamese SNSs (ReINTEL)
论文作者
论文摘要
本文提出了几种基于变压器的方法,用于在VLSP 2020评估活动的越南社交网站上可靠的情报识别。我们利用单语和多语言预训练的模型。此外,我们利用集合方法来改善不同方法的鲁棒性。我们的团队在ROC-AUC度量标准中获得了0.9378的得分,在私人测试集中,与其他参与者竞争。
This paper proposed several transformer-based approaches for Reliable Intelligence Identification on Vietnamese social network sites at VLSP 2020 evaluation campaign. We exploit both of monolingual and multilingual pre-trained models. Besides, we utilize the ensemble method to improve the robustness of different approaches. Our team achieved a score of 0.9378 at ROC-AUC metric in the private test set which is competitive to other participants.