论文标题

改善了某些谐波单价功能的BOHR不平等现象

Improved Bohr inequalities for certain class of harmonic univalent functions

论文作者

Ahamed, Molla Basir, Allu, Vasudevarao, Halder, Himadri

论文摘要

令$ \ Mathcal {h} $为复杂值的谐波映射$ f = h+f = h+\ bar {g} $在单位磁盘$ \ mathbb {d}中定义归一化$ h(0)= 0 = h^{\ prime}(0)-1 $和$ g(0)= 0 $。令$ \ Mathcal {h} _ {0} = \ {f = h+\ bar {g} \ in \ Mathcal {h}:g^{\ prime}(0)= 0 \}。 $ ghosh and vasudevrao \ cite {ghosh-vasudevarao-bams-2020}已经研究了以下有趣的谐波单价类$ \ mathcal {p}^{0} _ {\ Mathcal {\ Mathcal {h}}(M) $ \ MATHCAL {p}^{0} _ {\ Mathcal {h}}(m):= \ {f = h+\+\ overline {g} \ in \ mathcal {h} _ {h} _ {0} _ {0} -m+| zg^{\ prime \ prime}(z)|,\; z \ in \ mathbb {d} \; \ mbox {and} \; \; \; m> 0 \}。 $$在本文中,我们获得了尖锐的bohr-rogosinski不平等,改善的bohr不平等,精致的bohr不平等和bohr-type不平等,用于$ \ mathcal {p} _ {\ mathcal {\ mathcal {h}}}}}}^0} {0}(m)$。

Let $ \mathcal{H} $ be the class of complex-valued harmonic mappings $ f=h+\bar{g}$ defined in the unit disk $ \mathbb{D} : =\{z\in\mathbb{C} : |z|<1\} $, where $ h $ and $ g $ are analytic functions in $ \mathbb{D} $ with the normalization $ h(0)=0=h^{\prime}(0)-1 $ and $ g(0)=0 $. Let $ \mathcal{H}_{0}=\{f=h+\bar{g}\in\mathcal{H} : g^{\prime}(0)=0\}. $ Ghosh and Vasudevrao \cite{Ghosh-Vasudevarao-BAMS-2020} have studied the following interesting harmonic univalent class $ \mathcal{P}^{0}_{\mathcal{H}}(M) $ which is defined by $$\mathcal{P}^{0}_{\mathcal{H}}(M) :=\{f=h+\overline{g} \in \mathcal{H}_{0}: \mathrm{Re} (zh^{\prime\prime}(z))> -M+|zg^{\prime\prime}(z)|,\; z \in \mathbb{D}\; \mbox{and}\;\; M>0\}. $$ In this paper, we obtain the sharp Bohr-Rogosinski inequality, improved Bohr inequality, refined Bohr inequality and Bohr-type inequality for the class $ \mathcal{P}_{\mathcal{H}}^{0}(M) $.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源