论文标题

深层学习的积极学习代理

Active Learning for Deep Gaussian Process Surrogates

论文作者

Sauer, Annie, Gramacy, Robert B., Higdon, David

论文摘要

Deep Gaussian流程(DGP)越来越流行,作为机器学习(ML)的预测模型(ML)的非平稳灵活性以及应对训练数据中突然政权变化的能力。在这里,我们探索DGP作为计算机模拟实验的替代物,其响应表面具有相似的特征。特别是,我们通过一种新型的椭圆形切片采样(ESS)贝叶斯后推理方案将DGP自动翘曲和完全不确定性定量(UQ)传输到主动学习(AL)策略,这些策略在输入空间中在输入空间中不均匀 - 普通的(固定)GP无法做到这一点。以这种方式依次构建设计可以允许较小的培训集,从而限制了对模拟器代码的昂贵评估,并降低了DGP推理的立方成本。当训练数据大小通过仔细的获取以及潜在的潜在层布局较小时,该框架可以有效且可在计算上进行操作。我们的方法在仿真数据和两个实际的计算机实验中进行了说明,这些实验的输入维度有变化。我们在Cran的“ DEEPGP”软件包中提供了开源实现。

Deep Gaussian processes (DGPs) are increasingly popular as predictive models in machine learning (ML) for their non-stationary flexibility and ability to cope with abrupt regime changes in training data. Here we explore DGPs as surrogates for computer simulation experiments whose response surfaces exhibit similar characteristics. In particular, we transport a DGP's automatic warping of the input space and full uncertainty quantification (UQ), via a novel elliptical slice sampling (ESS) Bayesian posterior inferential scheme, through to active learning (AL) strategies that distribute runs non-uniformly in the input space -- something an ordinary (stationary) GP could not do. Building up the design sequentially in this way allows smaller training sets, limiting both expensive evaluation of the simulator code and mitigating cubic costs of DGP inference. When training data sizes are kept small through careful acquisition, and with parsimonious layout of latent layers, the framework can be both effective and computationally tractable. Our methods are illustrated on simulation data and two real computer experiments of varying input dimensionality. We provide an open source implementation in the "deepgp" package on CRAN.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源