论文标题

关于与家人的广义代数理论和类别的注释

A Note on Generalized Algebraic Theories and Categories with Families

论文作者

Bezem, Marc, Coquand, Thierry, Dybjer, Peter, Escardó, Martín

论文摘要

我们给出了一个新的语法独立定义,将广义代数理论的概念作为具有额外结构的家庭(CWF)类别的初始对象。为此,我们定义了如何为通用代数理论构建有效的签名$σ$,以及具有$σ$结构的CWF类别,并具有$σ$结构的结构和CWF毛状态,可在鼻子上保留这种结构。我们的定义是指纯粹的语境,类型和术语的统一家庭,这是纯粹的语义概念。此外,我们展示了如何使用$σ$结构的句法构造初始CWF。该结果可以看作是伯克霍夫(Birkhoff)完整定理的方程逻辑的概括。它是通过扩展Castellan,Clairambault和Dybjer建造初始CWF来获得的。我们为单体,类别,家庭类别以及与家庭具有额外结构的类型的类别的类别的类别的类别,类别的类别,为某种类型的依赖类型理论的类型的组合提供了广义代数理论的示例。这些模型是内部单体,内部类别和内部类别,其中包括家庭(具有额外结构)与家庭的类别。

We give a new syntax independent definition of the notion of a generalized algebraic theory as an initial object in a category of categories with families (cwfs) with extra structure. To this end we define inductively how to build a valid signature $Σ$ for a generalized algebraic theory and the associated category of cwfs with a $Σ$-structure and cwf-morphisms that preserve this structure on the nose. Our definition refers to uniform families of contexts, types, and terms, a purely semantic notion. Furthermore, we show how to syntactically construct initial cwfs with $Σ$-structures. This result can be viewed as a generalization of Birkhoff's completeness theorem for equational logic. It is obtained by extending Castellan, Clairambault, and Dybjer's construction of an initial cwf. We provide examples of generalized algebraic theories for monoids, categories, categories with families, and categories with families with extra structure for some type formers of dependent type theory. The models of these are internal monoids, internal categories, and internal categories with families (with extra structure) in a category with families.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源