论文标题
语义分割,具有稀疏的卷积神经网络,用于微生物中的事件重建
Semantic Segmentation with a Sparse Convolutional Neural Network for Event Reconstruction in MicroBooNE
论文作者
论文摘要
我们介绍了语义分割网络Sparsessnet的性能,该网络提供了微酮数据的像素级分类。微酮实验采用液体氩时间投影室来研究中微子性质和相互作用。 Sparsessnet是一个submanifold稀疏卷积神经网络,它提供了基于机器学习的初始算法,该算法在Microboone的$ν_e$ - Apperance振荡分析中提供。该网络经过培训,可以将像素分为五个类,这些类别被重新分类为与当前分析更相关的两个类。 SparsessNet的输出是进一步分析步骤中的关键输入。该技术是在液体氩时间投影室数据中首次使用的,并且与先前使用的卷积神经网络相比,在精度和计算资源利用方面都是一种改进。测试样本上达到的准确性是$ \ geq 99 \%$。对于完整的中微子相互作用模拟,处理一个图像的时间为$ \ $ \ $ 0.5秒,内存使用率为1 GB级别,允许使用最典型的CPU Worker机器。
We present the performance of a semantic segmentation network, SparseSSNet, that provides pixel-level classification of MicroBooNE data. The MicroBooNE experiment employs a liquid argon time projection chamber for the study of neutrino properties and interactions. SparseSSNet is a submanifold sparse convolutional neural network, which provides the initial machine learning based algorithm utilized in one of MicroBooNE's $ν_e$-appearance oscillation analyses. The network is trained to categorize pixels into five classes, which are re-classified into two classes more relevant to the current analysis. The output of SparseSSNet is a key input in further analysis steps. This technique, used for the first time in liquid argon time projection chambers data and is an improvement compared to a previously used convolutional neural network, both in accuracy and computing resource utilization. The accuracy achieved on the test sample is $\geq 99\%$. For full neutrino interaction simulations, the time for processing one image is $\approx$ 0.5 sec, the memory usage is at 1 GB level, which allows utilization of most typical CPU worker machine.