论文标题

分布式编码机器学习的激励机制设计

Incentive Mechanism Design for Distributed Coded Machine Learning

论文作者

Ding, Ningning, Fang, Zhixuan, Duan, Lingjie, Huang, Jianwei

论文摘要

分布式机器学习平台需要招募许多异质工人节点以同时完成计算。结果,由于散落的工人,总体表现可能会退化。通过将冗余引入计算,编码的机器学习可以通过通过第一个$ k $(总计$ n $)工人完成计算的最终计算结果来有效地提高运行时性能。尽管现有的研究着重于设计有效的编码方案,但设计适当的激励措施以鼓励工人参与的问题仍然尚未探索。本文研究了平台的最佳激励机制,该机制激励适当的工人参与编码机器学习,尽管有关异构工人的计算表现和成本的不完整信息。这项工作的关键贡献是将工人的多维异质性作为一维指标,该指标以线性计算复杂性为指导平台在不完整的信息下有效地选择工人。此外,我们证明,如果我们使用广泛采用的MDS(最大距离可分离)代码进行数据编码,则最佳恢复阈值$ K $与参与者编号$ n $成正比。我们还表明,当工人编号足够大时,由于信息不完整而导致的成本增加,但在工人数量上并不能单调减少。

A distributed machine learning platform needs to recruit many heterogeneous worker nodes to finish computation simultaneously. As a result, the overall performance may be degraded due to straggling workers. By introducing redundancy into computation, coded machine learning can effectively improve the runtime performance by recovering the final computation result through the first $k$ (out of the total $n$) workers who finish computation. While existing studies focus on designing efficient coding schemes, the issue of designing proper incentives to encourage worker participation is still under-explored. This paper studies the platform's optimal incentive mechanism for motivating proper workers' participation in coded machine learning, despite the incomplete information about heterogeneous workers' computation performances and costs. A key contribution of this work is to summarize workers' multi-dimensional heterogeneity as a one-dimensional metric, which guides the platform's efficient selection of workers under incomplete information with a linear computation complexity. Moreover, we prove that the optimal recovery threshold $k$ is linearly proportional to the participator number $n$ if we use the widely adopted MDS (Maximum Distance Separable) codes for data encoding. We also show that the platform's increased cost due to incomplete information disappears when worker number is sufficiently large, but it does not monotonically decrease in worker number.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源