论文标题

流体流的概率神经网络降低阶替代

Probabilistic neural network-based reduced-order surrogate for fluid flows

论文作者

Fukami, Kai, Maulik, Romit, Ramachandra, Nesar, Fukagata, Koji, Taira, Kunihiko

论文摘要

近年来,神经网络(NNS)在物理科学中的应用激增。尽管已经提出了各种算法的进步,但到目前为止,有限的研究数量有限,可以评估神经网络的解释性。这有助于大多数NN方法的仓促表征为“黑匣子”,并阻碍了对物理学更强大的机器学习算法的更广泛接受。为了解决流体流量建模中的此类问题,我们使用概率神经网络(PNN),该神经网络(PNN)以计算有效的方式为其预测提供置信区间。考虑到从浅水方程溶液的局部传感器测量中估算适当的正交分解(POD)系数的估计,对该模型进行了评估。我们发现,目前的模型优于估计的众所周知的线性方法。然后将该模型应用于POD系数的时间演化,考虑到具有Gurney瓣和NOAA海面温度的NACA0012机翼的效果。本模型除了提供置信区间外,还可以准确估计POD系数,从而量化给定​​特定训练数据集的输出的不确定性。

In recent years, there have been a surge in applications of neural networks (NNs) in physical sciences. Although various algorithmic advances have been proposed, there are, thus far, limited number of studies that assess the interpretability of neural networks. This has contributed to the hasty characterization of most NN methods as "black boxes" and hindering wider acceptance of more powerful machine learning algorithms for physics. In an effort to address such issues in fluid flow modeling, we use a probabilistic neural network (PNN) that provide confidence intervals for its predictions in a computationally effective manner. The model is first assessed considering the estimation of proper orthogonal decomposition (POD) coefficients from local sensor measurements of solution of the shallow water equation. We find that the present model outperforms a well-known linear method with regard to estimation. This model is then applied to the estimation of the temporal evolution of POD coefficients with considering the wake of a NACA0012 airfoil with a Gurney flap and the NOAA sea surface temperature. The present model can accurately estimate the POD coefficients over time in addition to providing confidence intervals thereby quantifying the uncertainty in the output given a particular training data set.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源